
Better Lemmas with Lambda Extraction
Mathias Preiner, Aina Niemetz, and Armin Biere

Johannes Kepler University, Linz, Austria

Abstract—In Satisfiability Modulo Theories (SMT), the theory
of arrays provides operations to access and modify an array at
a given index, e.g., read and write. However, common operations
to modify multiple indices at once, e.g., memset or memcpy of the
standard C library, are not supported. We describe algorithms to
identify and extract array patterns representing such operations,
including memset and memcpy. We represent these patterns in our
SMT solver Boolector by means of compact and succinct lambda
terms, which yields better lemmas and increases overall perfor-
mance. We describe how extraction and merging of lambda terms
affects lemma generation, and provide an extensive experimental
evaluation of the presented techniques. It shows a considerable
improvement in terms of solver performance, particularly on
instances from symbolic execution.

I. INTRODUCTION

The theory of arrays, which for instance has been axiom-
atized by McCarthy [7], enables reasoning about “memory”
in both software and hardware verification. It provides two
operations read and write for accessing and modifying arrays
on single array indices. While these two operations can be used
to capture many aspects of modeling memory, they are not
sufficient to succinctly encode array operations over multiple
indices or a range of indices, e.g., memset or memcpy from the
standard C library. Such array operations can therefore only
be represented verbosely by means of a constant number of
read and write operations. It is further impossible to reason
about a variable number of indices e.g., a memset operation
of variable size (without introducing quantifiers).

To overcome these limitations, Seshia et. al. [1] introduced
an approach to model arrays by means of restricted lambda
terms. This also enabled their SMT solver UCLID [10] to
reason about ordered data structures and partially interpreted
functions. However, UCLID employs the eager SMT approach
and thus eliminates all lambda terms as a rewriting step prior
to bit-blasting the formula to SAT, which might result in an
exponential blow-up in the size of the formula [10].

An extension to the theory of arrays by Sinz et.al. [5] uses
lambda terms similarly to UCLID in order to model memset
and memcpy operations as well as loop summarizations, which
in essence are initialization loops for arrays. As UCLID, this
approach suffers from the problem of exponential explosion
through eager lambda elimination.

To avoid exponential lambda elimination, in [9] we intro-
duced a new decision procedure, which lazily handles non-
recursive and non-extensional lambda terms. That decision
procedure enabled us to succinctly represent array operations

Supported by Austrian Science Fund (FWF), NFN S11408-N23 (RiSE).

such as memset and memcpy as well as other array initializa-
tion patterns by means of lambda terms within our SMT solver
Boolector. Lambda terms also allow to reason about variable
ranges of indices without the need for quantifiers.

In this paper, we continue this thread of research and
describe various patterns of operations on arrays occurring
in benchmarks from SMT-LIB (http://www.smtlib.org). We
provide algorithms to identify these patterns, and to extract
succinct lambda terms from them. Extraction leads to stronger,
as well as fewer lemmas. This improves performance by
orders of magnitude on certain benchmarks, particularly on
instances from symbolic execution [2]. We further describe a
technique called lambda merging. Our extensive experimental
evaluation shows that both techniques considerably improve
the performance of Boolector, the winner of the QF ABV
track of the SMT competition 2014.

II. PRELIMINARIES

We assume the usual notions and terminology of first order
logic and are mainly interested in many-sorted languages,
where bit vectors of different bit width correspond to different
sorts, and array sorts correspond to a mapping (τi ⇒ τe) from
index sort τi to element sort τe. We primarily focus on the
quantifier-free theories of fixed size bit vectors and arrays.
However, our approach is not restricted to the above.

In general, we refer to 0-arity function symbols as constant
symbols. Symbols a, b, i, j, and e denote constants, where a
and b are used for array constants, i and j for array indices,
and e for an array element. We denote an if-then-else over bit
vector terms with condition c, then branch t1, and else branch
t2 as ite(c, t1, t2), which is interpreted as ite(>, t1, t2) = t1
and ite(⊥, t1, t2) = t2. We identify operations read and write
as basic array operations (cf. select and store in SMT-LIBv2
notation) for accessing and modifying arrays. A read operation
read(a, i) denotes the element of array a at index i, whereas a
write operation write(a, i, e) represents the modified array a
with element e written to index i. The non-extensional theory
of arrays is axiomatized by the following axioms originally
introduced by McCarthy in [7]:

i = j → read(a, i) = read(a, j) (A1)
i = j → read(write(a, i, e), j) = e (A2)
i 6= j → read(write(a, i, e), j) = read(a, j) (A3)

Axiom (A1) asserts that accessing array a at two indices
that are equal always yields the same element. Axiom (A2)
asserts that accessing a modified array on the updated index i
yields the written element e, whereas axiom (A3) ensures that

http://www.smtlib.org

the unmodified element of the original array a at index j is
returned if the modified index i is not accessed.

A write sequence of n (consecutive) write operations of
the form a1 = write(a0, i1, e1), . . . , an = write(an−1, in, en)
is denoted as (ak := write(ak−1, ik, ek))nk=1 with array a0 as
the base array of the write sequence. In the following we use
an = write(a, ī, ē) as shorthand for write sequences.

In [9] we use uninterpreted functions (UF) and lambda
terms to represent array variables and array operations, re-
spectively. Consequently, a read on an array of sort τi ⇒ τe
is represented as a function application f(i) on either an
UF f or a lambda term f := λj . t, where function f maps
terms of sort τi to terms of sort τe. Furthermore, write
operations write(a, i, e) are represented as lambda terms
λj . ite(i = j, e, a(j)), where given an array a, a function
application yields element e if j is equal to the modified
index i and the unchanged element a(j), otherwise. Lambda
terms allow us to succinctly model array operations such as
memset and memcpy from the standard C library, or arrays
initialized with a constant value. For example, memset with
signature memset (a, i, n, e), which sets each element of
array a to e within the range [i, i + n[, can be represented
as λj . ite(i ≤ j < i+ n, e, a(j)). In this paper, we use read
operations and function applications interchangeably.

III. EXTRACTING LAMBDAS

Currently, the SMT-LIBv2 standard only supports write
operations for modifying the contents of an array at one
index at a time. Hence, quasi-parallel array operations like
memset or memcpy usually have to be represented as a fixed
sequence of consecutive write operations, where copying or
setting n indices always requires n write operations. Further,
modeling such array operations with a variable range is not
possible (without quantifiers), since it would require a variable
number of write operations. Lambda terms, however, provide
means to succinctly represent parallel array operations, and
further allow to model these operations with variable ranges.
For example, modeling memset(a, i, n, e) with a sequence
of writes for some fixed n produces n nested write operations
write(write(. . . (write(a, i, e), i+1, e) . . .), i+n−1, e) which
could be represented in a more compact way by means of a
single lambda term λj . ite(i ≤ j < i+ n, e, a(j)).

In the following, we describe several array operation pat-
terns we identified by analyzing QF ABV benchmarks in
the SMT-LIB benchmark library. These patterns can not be
captured compactly by means of write and read operations
alone, but they can be succinctly represented using lambda
terms. For each pattern identified in a formula, lambda terms
are extracted and used instead of the original array operations,
which are defined as follows.

A. Memset Pattern

The probably most common pattern is the memset pattern
modeling the memset (a, i, n, e) operation, which updates n
elements of array a within range [i, i+n[to a value e starting

from address i. This is the pattern already described above,
and it is represented by the lambda term

λmset := λj . ite(i ≤ j < i+ n, e, a(j)).

Lambda term λmset yields value e if index j is within the
range [i, i + n[, and the unmodified value from array a at
position j otherwise. Note that in actual benchmarks, e.g.,
those from SMT-LIB, the upper bound n is constant, while
indices, as well as values are usually symbolic.

B. Memcpy Pattern

The memcpy pattern models the memcpy(a, b, i, k, n) op-
eration, which copies n elements from source array a starting
at address i to destination array b at address k. If arrays a and
b are syntactically distinct, or if the source and destination
addresses do not overlap, i.e., (i + n < k) or (k + n < i),
memcpy can be represented as

λmcpy := λj . ite(k ≤ j < k + n, a(i+ j − k), b(j)).

Lambda term λmcpy returns the value copied from source
array a if it is accessed within the copied range [k, k + n[,
and the value from destination array b at position j otherwise.

Assume arrays a and b are syntactically equal, then aliasing
occurs. Writing to array b at overlapping memory regions
modifies elements in a to be copied to the destination address.
This is not captured by lambda term λmcpy , since λmcpy

behaves like a memmove operation. It ensures that elements of
a at the overlapping memory region are copied before being
overwritten. The following lambda term λmcpyo can be used
to model memcpy applied to potentially overlapping memory
regions.

λmcpyo := λj . ite(k ≤ j < k + n,

ite(i ≤ k < i+ n,

a(i+ ((j − k) mod (k − i))),
a(i+ j − k)),

b(j)).

If condition i ≤ k < i+ n holds, source and destination mem-
ory regions overlap and consequently, the elements of the over-
lapping memory region always contain the repeated sequence
of the elements of array a in range [i, k[. This corresponds to
the value a(i+ (j − k) mod (k − i)), where k − i represents
the size of the non-overlapping memory region and thus, the
number of elements that occur repeatedly. If the memory
regions do not overlap, the behavior of lambda terms λmcpyo

and λmcpy is equivalent. For the rest of this paper, we focus
on memcpy with non-overlapping memory regions.

C. Loop Initialization Pattern

The loop initialization pattern models array initialization
operations that can be expressed with the following loop

for (j = i; j < i+ n; j = j + inc) {a[j] = e; },

where, starting from index i, the loop counter is incremented
by a constant inc greater than one. Consequently, every inc-th

element of an array a is modified within the range [i, i + n[.
The above loop pattern corresponds to the lambda term

λi→e := λj . ite(i ≤ j ∧ j < i+ n ∧ (inc | (j − i)), e, a(j)).

The memset pattern is actually a special case of this pattern
with inc = 1. Further, the divisibility condition inc | (j − i)
makes sure that there exists a c such that index j = i+ c · inc
or equivalently ((j − i) mod inc = 0).

It is also possible that the value written on an index i
depends on i itself. We found two such patterns in benchmarks.
They can be expressed with the following loops

for (j = i; j < i+ n; j = j + inc) {a[j] = j},
for (j = i; j < i+ n; j = j + inc) {a[j] = j + 1}

or equivalently with the following lambda terms

λi→i := λj . ite(i ≤ j ∧ j < i+ n ∧ (inc | (j − i)),
j, a(j))

λi→i+1 := λj . ite(i ≤ j ∧ j < i+ n ∧ (inc | (j − i)),
j + 1, a(j)).

Note that with inc = 1, the condition inc | (j−i) is redundant
and can be omitted. Further, this set of patterns is of course
just a subset of all possible structures in benchmarks for which
lambdas can be extracted. The ones discussed in this paper are
those that we observed in actual benchmarks, and which turn
out to be useful in our experiments.

D. Lemma Generation

Extracting lambda terms from write sequences does not only
yield more compact array representations but improves the
lemmas generated during search. As an example, consider a
memset operation with range [i, i + n[and value e, which is
represented as a sequence of write operations

b := write(write(. . . (write(a, i, e), i+1, e) . . .), i+n−1, e).

A read operation on array b at index j may produce a conflict
on index i, where read(b, j) 6= e. As a consequence, the
following lemma is generated.

(

n−1∧
k=1

j 6= i+ k) ∧ j = i→ read(b, j) = e

In the worst case, this might be repeated for all the indices
i + k with k ∈ [1, n[, which also results in n lemmas of the
above form. However, if we use a lambda term to represent
memset, then a conflict produces a single lemma of the form

i ≤ j ∧ j < i+ n→ read(b, j) = e,

which is more succinct and stronger as it covers an index range
instead of single indices. This effect can be observed in our
experiments in Sect. IV-B as well. If applicable, the number
of generated lemmas is reduced. This improves runtime and
more instances are solved.

E. Algorithms

Figure 1 depicts the main lambda extraction algorithm
extract_lambdas. The purpose of this procedure is to
initially identify and extract array patterns from each sequence
of write operations in formula φ (lines 5-7). The identified
patterns are then used to create lambda terms on top of each
other resulting in a new lambda term b, which is equisatisfiable
to the original write sequence an (lines 8-16), and is used to
substitute an in φ. Figures 2, 3, and 4 depict the algorithms for
identifying and extracting the actual array patterns. In essence,
they all can be split into the following three steps. Given a
sequence of write operations,

1) group write indices w.r.t. the corresponding pattern,
2) identify index sequences in these grouped write indices,
3) and create new pattern for identified index sequence.

In the following we describe the algorithms for identifying
and extracting array patterns in more detail.

A high level view of the main lambda extraction al-
gorithm extract_lambdas is given in Fig. 1. Given a
formula φ, for any write sequence an = write(a, ī, ē) with
distinct indices i1, . . . , in, extract_lambdas initially gen-
erates a map ρi→e, which maps indices i1, . . . , in to values
e1, . . . , en (line 4), and is then used to extract memset (pset),
memcpy (pcpy), and loop initialization patterns (ploop)
(lines 5-7). Note that procedures find_mset_patterns,
find_mcopy_patterns, and find_lp_patterns re-
move all index/value pairs included in extracted patterns from
ρi→e. As a consequence, at line 8, map ρi→e contains all
index/value pairs for which no pattern was extracted. The
actual memset, memcpy, and loop initialization lambda terms
are then created on top of each other with base array a0
of write sequence an as the initial base array (lines 8-
14). For the remaining index/value pairs in ρi→e, lambda
terms representing write operations are created on top of the
previously generated lambda terms, and the resulting term b
is then used to substitute the original write sequence an.

Note that indices i1, . . . , in are required to be distinct
constants (line 3) as otherwise, reordering write sequence an
does not result in an equisatisfiable sequence. As an example,
assume indices i and j are equal and values ei and ej are dis-
tinct. Accessing sequence aij := write(write(a, i, ei), j, ej)
at index j yields value ej . However, accessing sequence
aji := write(write(a, j, ej), i, ei) at index j yields ei since
i = j. Thus, aji is not equisatisfiable to aij .

Figures 2, 3, and 4 illustrate the algorithms for the actual
pattern extraction, which we describe in more detail in the
following. Procedure find_mset_patterns as in Fig. 2
extracts memset patterns, i.e., in essence, it identifies index
sequences that map to the same value. Given map ρi→e, the
procedure initially generates a reverse map ρe→i, which maps
values to indices and therefore groups indices that map to
the same value (lines 3-4). For each index group indices in
ρe→i, find_mset_patterns sorts indices in ascending
order (line 6) and identifies index sequences s := (ik)uk=l with
ik := ik−1 + 1 within lower bound l (il := indices[l]) and

1 procedure extract_lambdas(φ)

2 for write sequence an := write(a, ī, ē) in φ \

3 and i1, . . . , in are distinct

4 ρi→e := index_value_map(an)

5 pset := find_mset_patterns(ρi→e)

6 pcpy := find_mcopy_patterns(ρi→e)

7 ploop := find_lp_patterns(ρi→e)

8 b := a0
9 for p in pset

10 b := mk_memset(b, p.i, p.n, p.e)

11 for p in pcpy
12 b := mk_memcopy(p.a, b, p.i, p.k, p.n)

13 for p in ploop
14 b := mk_loop_init(b, p.i, p.n, p.inc)

15 for i, e in ρi→e

16 b := mk_write(b, i, e)

17 φ := φ[an/b]

Fig. 1. Main lambda extraction algorithm in pseudo-code.

1 procedure find_mset_patterns(ρi→e)

2 patterns := [], ρe→i := {}

3 for index,value in ρi→e

4 ρe→i[value].add(index)

5 for value,indices in ρe→i

6 indices := sort(indices)

7 l, u := 0

8 while u < len(indices)

9 while u + 1 < len(indices) \

10 and indices[u + 1] - indices[u] = 1

11 u += 1

12 if l 6= u

13 Pattern p

14 p.i := indices[l]

15 p.n := indices[u] - indices[l] + 1

16 p.e := value

17 patterns.add(p)

18 ρi→e := ρi→e \ {indices[i] | ∀i ∈ [l, u]}
19 l := u + 1 /* next sequence */

20 u += 1

21 return patterns

Fig. 2. Memset pattern extraction algorithm in pseudo-code.

upper bound u (iu := indices[u]) (lines 7-19). If sequence s
includes at least two indices (i.e., u 6= l), a new memset pattern
p with start address p.i, size p.n and value p.e is created and
added to list patterns (lines 13-17). All indices included in
sequence s are removed from map ρi→e (line 18), since these
indices are covered by a detected pattern. If all index groups
have been processed, procedure find_mset_patterns
returns the list of detected memset patterns patterns.

Figure 3 illustrates procedure find_mcopy_patterns
for extracting memcpy patterns. Assume that write operation
write(b, dst + o, a(src + o)) represents a single memcpy
operation memcpy(a, b, src, dst, n) with offset o and src ≤
o < src + n, which copies one element from source address
src + o of array a to destination address dst + o of array
b. Consequently, ρi→e maps indices of the form dst + o
to values of the form a(src + o). Initially, the procedure

1 procedure find_mcopy_patterns(ρi→e)

2 patterns := [], offset_groups := {}

3 for index,value in ρi→e \

4 and index = dst + o \

5 and value = a(src + o)

6 offset_groups[dst,a,src].add(o)

7 for dst,a,src in offset_groups

8 indices := sort(offset_groups[dst,a,src])

9 u,l := 0

10 while u < len(indices)

11 while u + 1 < len(indices) \

12 and indices[u + 1] - indices[u] = 1

13 u += 1

14 if l 6= u

15 Pattern p

16 p.a := a

17 p.i := src + indices[l]

18 p.k := dst + indices[l]

19 p.n := indices[u] - indices[l] + 1

20 patterns.add(p)

21 ρi→e := ρi→e \ {indices[i] | ∀i ∈ [l, u]}
22 l := u + 1 /* next sequence */

23 u += 1

24 return patterns

Fig. 3. Memcopy pattern extraction algorithm in pseudo-code.

collects all offsets o from the indices in ρi→e and groups
them by destination address dst, source array a, and source
address src (lines 3-6). Note that a group of offsets corre-
sponds to the memory regions copied from source address
of array a to destination address of array b. For each offset
group indices in offset groups , find_mcopy_patterns
identifies index sequences s := (ik)uk=l similar to procedure
find_mset_patterns (lines 11-13). If a sequence with at
least two indices is found, a new memcpy pattern with source
array p.a, source address p.i, destination address p.k, and size
p.n is created and added to the patterns list (lines 15-20).
As for find_mset_patterns, indices included in a se-
quence s are removed from ρi→e (line 21). If all offset groups
have been processed, procedure find_mcopy_patterns
returns the list of detected memcpy patterns patterns.

Figure 4 illustrates procedure find_lp_patterns for
extracting loop initialization patterns. Initially, all indices in
map ρi→e are categorized w.r.t. the three loop initialization
patterns defined above, which correspond to the map ρe→i,
and the lists ρi→i and ρi→i+1. Map ρe→i groups indices
that map to the same value, list ρi→i contains indices that
map to themselves, and list ρi→i+1 contains all indices i
that map to i + 1 (lines 4-9). For index groups ρi→i+1

and ρi→i+1, and for each index group in ρe→i, procedure
find_lpp_aux identifies sequences s := (ik)uk=l with
ik := ik−1 + inc and inc ≥ 1 within lower bound l (il =
indices[l]) and upper bound u (iu := indices[u]) (lines 10-
13). Identifying index sequences in find_lpp_aux is sim-
ilar to find_mset_patterns, except that increment inc
can be greater than one. For each sequence, inc is initially
set to indices[u + 1] − indices[u] (lines 21-22), which

1 procedure find_lp_patterns(ρi→e)

2 patterns := [], ρe→i := {}

3 ρi→i := [], ρi→i+1 := []

4 for index,value in ρi→e

5 ρe→i[value].add(index)

6 if value = index

7 ρi→i.add(index)

8 elif value = index + 1

9 ρi→i+1.add(index)

10 for value,indices in ρe→i

11 patterns.add(find_lpp_aux(ρi→e, ρe→i))

12 patterns.add(find_lpp_aux(ρi→e, ρi→i))

13 patterns.add(find_lpp_aux(ρi→e, ρi→i+1))

14 return patterns

15

16 procedure find_lpp_aux(ρi→e, indices)

17 patterns := []

18 indices := sort(indices)

19 l, u := 0

20 while u < len(indices)

21 if u + 1 < len(indices)

22 inc := indices[u + 1] - indices[u]

23 while u + 1 < len(indices) \

24 and indices[u + 1] - indices[u] = inc

25 u += 1

26 if l 6= u

27 Pattern p

28 p.i := indices[l]

29 p.n := indices[u] - indices[l] + 1

30 p.e := value

31 p.inc := inc

32 patterns.add(p)

33 ρi→e := ρi→e \ {indices[i] | ∀i ∈ [l, u]}
34 l := u + 1 /* next sequence */

35 u += 1

36 return patterns

Fig. 4. Loop initialization pattern extraction algorithm in pseudo-code.

defines the increment value between neighbouring indices,
e.g., (l, l + inc, l + 2 · inc, l + 3 · inc, . . . , u). If a sequence
with at least two indices is found, a new loop initialization
pattern with lower bound p.i, size p.n, and increment p.inc
is created and added to the patterns list. Index sequences
found in ρe→i correspond to λi→e patterns. These require
a p.e value, which is saved in addition (but remains un-
used for sequences ρi→i and ρi→i+1). As before, indices
included in a detected sequence s are removed from map
ρi→e (line 33). If index group indices has been processed,
procedure find_lpp_aux returns the list of detected loop
initialization patterns.

In case that write expressions in a write sequence are shared,
i.e., they also appear in the formula outside of the sequence,
we still extract patterns for the whole sequence. This may
duplicate parts, which is not a problem since the extracted
lambda terms are succinct and the “duplication” only affects
the index range check of a lambda and is therefore negligible.

There are two common approaches for representing the
initialization of an array variable a with n concrete values:

with (1) write sequences of size n with array a as base array,
or (2) n read operations on array a by asserting for each
index i ∈ i1, . . . , in that read(a, i) = e. In case (1), we are
able to directly represent such array initializations by means of
lambda terms. However, in case (2), we first have to translate
the read operations into sequences of write operations. For
example, given an array a that is initialized with some values e
on indices 1− 4, we could either represent this as a sequence
of write operations with a fresh array variable b as base array

a := write(write(write(write(b, 1, e), 2, e), 3, e), 4, e),

or with the following four equalities asserted to be true

read(a, 1) = e, read(a, 2) = e,
read(a, 3) = e, read(a, 4) = e.

However, the initialization with read/value equalities can also
be represented as lambda term

a := λj . ite(1 ≤ j ≤ 4, e, b(j)),

where array b is a fresh array variable. In order to extract
lambda terms from these equalities, we translate them into
sequences of write operations and apply the lambda extraction
algorithms to it. The only requirement is that, for the same
reason as for the write sequence case, the read indices have
to be distinct.

IV. MERGING LAMBDAS

Lambda terms extracted from a sequence of write operations
often do not cover all indices in the sequence. Some might be
left over. In order to preserve equisatisfiability, we use the
uncovered write operations to create a new write sequence on
top of the extracted lambda terms (cf. lines 15-16 in Fig. 2).
Note that as we represent write operations as lambda terms,
we actually generate a sequence of lambda terms (representing
write operations) on top of the extracted terms. Given a
sequence of lambda terms of size n, however, we can apply
a rewriting technique we refer to as lambda merging, which
inlines the function bodies of lambda terms λ1, . . . , λn−1.
The result is a single lambda term with a function body
consisting of the function bodies of lambda terms λ1, . . . , λn.
This technique may not yield representations as compact as
lambda extraction, but merging function bodies of consecu-
tive lambdas often enables additional simplifications. As an
example consider write sequence an := write(a, ī, ē) of size
n, where e1, . . . , en are equal. It corresponds to the following
lambda sequence.

λn := λjn . ite(jn = in, e, λn−1(jn)),
...

λ1 := λj1 . ite(j1 = i1, e, a0(j1))

If we apply lambda merging to λn, . . . , λ1 and inline function
bodies, we obtain the following lambda term

λn′ := λjn . ite(jn = in, e,
. . .
ite(jn = i1, e, a0(jn))) . . .)

1 procedure merge_lambdas(φ)

2 for write sequence λn := write(a, ī, ē) in φ

3 b := rec_merge(n, jn, λn)

4 φ := φ[λn/b]

5

6 procedure rec_merge(n, jn, λi)

7 /* base array a0 */

8 if i = 0 return a0(jn)

9 /* λi = λji . ite(ji = ii, ei, λi−1(ji)) */

10 ti−1 := rec_merge(n, jn, λi−1)

11 if i < n

12 ti := ite(ji = ii, ei, λi−1(ji))[ji/jn]

13 return ti[λi−1(jn)/ti−1]

14 /* top-most lambda an */

15 return λn[λi−1(jn)/ti−1]

Fig. 5. Merge lambdas algorithm in pseudo-code.

Note that λn′ can be further simplified by merging the if-then-
else terms into one (since the if-branch of each if-then-else
contains value e), which results in lambda term λn′′ .

λn′′ := λjn . ite(jn = in ∨ . . . ∨ jn = i1, e, a0(jn))

A. Lemma Generation

Merged lambdas can be more compact than write sequences
and may even be beneficial for lemma generation. For exam-
ple, a read operation on λn′′ at index j may produce a conflict
on index i1, where read(λn′′ , j) 6= e. As a consequence, the
following lemma is generated.

j = in ∨ . . . ∨ j = i1 → read(λn′′ , j) = e.

The resulting lemma covers all cases where read(λn′′ , j) could
produce a conflict on indices i2, . . . , in. In the original write
sequence version, however, it might need n lemmas.

B. Algorithm

Figure 5 illustrates procedures merge_lambdas and
rec_merge for merging lambda sequences. Given formula φ,
for every lambda sequence λn, procedure merge_lambdas
recursively merges the lambda terms in λn into lambda term b,
which is then used to substitute lambda sequence λn in for-
mula φ (line 4). Procedure rec_merge recursively traverses
the lambda sequence starting at the top most lambda term λn
and substitutes every bound variable ji by the variable jn,
which is bound by the top most lambda term λn. In the base
case (i = 0), the procedure returns a fresh read operation
on base array a0 at index jn (which substitutes variable j1).
Else, it performs a recursive call on λi−1, which yields term
ti−1. For every lambda term λi with i < n, rec_merge
generates lambda term ti by substituting all occurrences of
variable ji in the function body of λi by jn, and returns the
lambda term obtained by substituting all occurrences of read
operation read(λi−1, jn,) in ti with term ti−1 (line 13). For
the top most lambda (i = n), procedure rec_merge returns
the lambda term obtained by substituting all occurrences of
read operation read(λi−1, jn,) in λn with term ti−1 (line 15).

V. EXPERIMENTAL EVALUATION

We implemented lambda extraction and merging in our
SMT solver Boolector and evaluated our techniques on all
non-extensional benchmarks from the QF ABV category of
the SMT-LIBv2 benchmark library. Six configurations are
considered: (1) BoolectorBase, (2) BoolectorE, (3) BoolectorM,
(4) BoolectorX, (5) BoolectorXME, and (4) BoolectorXM. The
base line BoolectorBase is an improved version of Boolector
that won the QF ABV track of the SMT competition in 2014.
For the other configurations, subscript X indicates that lambda
extraction is enabled, and subscript M indicates that lambda
merging is enabled. Subscript E indicates an eager solving
approach by reducing the formula to QF BV. It eliminates
lambda terms with beta reduction, and the remaining read
operations, i.e., applications of uninterpreted functions (UF),
by Ackermann reduction. The BoolectorE and BoolectorXME
configurations essentially simulate an eager approach similar
to that of UCLID [10].

All experiments were performed on a cluster with 30 nodes
of 2.83GHz Intel Core 2 Quad machines with 8GB of memory
using Ubuntu 14.04.2 LTS. The memory and time limit for
each solver/benchmark pair was set to 7GB and 1200 seconds
CPU time, respectively. In case of a timeout or memory out,
a penalty of 1200 seconds was added to the total CPU time.
Note that the time and memory limits and the hardware used
for our experiments differ from the setup used at the SMT
competition 2014.

Table I depicts the overall results consisting of the number
of solved benchmarks (Solved), number of timeouts (TO),
number of memory outs (MO), and the CPU time (Time) of
all four configurations on the QF ABV benchmarks. Enabling
either lambda extraction (BoolectorX) or lambda merging
(BoolectorM) improves the number of solved benchmarks by
up to 17 instances and the runtime by up to 19% compared
to BoolectorBase. Combining both techniques (BoolectorXM)
solves 21 more benchmarks and requires 30% less runtime
compared to BoolectorBase. This suggests, that lambda extrac-
tion and merging have orthogonal effects. They complement
each other and in combination improve solver performance
further (most of the time). However, if the eager solving
approach is employed, both configurations BoolectorE and
BoolectorXME do not show a notable improvement in terms
of solved instances (less timeouts, but more memory outs).
This is due to the high memory consumption caused by
eager elimination of lambda terms and UFs, where BoolectorE
in total consumes 2.6 times (397 GB), and BoolectorXME
2.3 times (347 GB) more memory than BoolectorBase. The
other four configurations require roughly the same amount of
memory. Table II depicts the overall results and the number
of extracted patterns grouped by QF ABV benchmark fam-
ilies in more detail. On benchmark families bmc, brubiere2,
klee, platania, and stp BoolectorXM considerably improves in
terms of runtime and number of solved instances compared
to BoolectorBase. On the brubiere2 and platania benchmark
families, the combined use of lambda extraction and lambda

Solver Solved TO MO Time [s]
BoolectorBase 13242 68 7 122645

BoolectorE 13242 49 26 120659
BoolectorM 13259 50 8 105647
BoolectorX 13256 54 7 99834

BoolectorXME 13246 47 24 111114
BoolectorXM 13263 46 8 84760

TABLE I
OVERALL RESULTS ON QF ABV BENCHMARKS (13317 IN TOTAL).

merging yields significantly better results than both BoolectorX
and BoolectorM alone. The most notable improvement in terms
of runtime is achieved on the klee benchmark family, where all
three configurations with lambda extraction enabled improve
by orders of magnitude compared to BoolectorBase. The klee
benchmark family consists of symbolic execution benchmarks
obtained from KLEE [2], a symbolic virtual machine built on
top of the LLVM compiler infrastructure. Previous versions
of Boolector were shown to have rather poor performance
on these benchmarks [8], which is confirmed by our ex-
periments. This is due to the extreme version of lazy SMT
in Boolector, using lemmas on demand. In our experiments,
BoolectorBase requires almost 13000 seconds to solve the 622
klee benchmarks, while lambda extraction improved runtime
by up to a factor of 500 compared to BoolectorBase. This
effect is illustrated by the scatter plot in Fig. 6, which shows
that the runtime on most of the benchmarks is improved by
a factor of 10 to 100. The klee benchmarks contain many
instances of the λmset and λi→e patterns, where BoolectorXM
was able to extract 9373 and 10049 lambda terms with an
average size of 108 and 11, respectively. On most of the
benchmarks where BoolectorXM was able to extract lambda
terms, the runtime improved. The only exceptions are the

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

B
o
o
le

c
to

r X
M

 r
u
n
ti
m

e
 [
s
]

BoolectorBase runtime [s]

10x faster
100x faster

1000x faster

Fig. 6. BoolectorBase vs. BoolectorXM on klee benchmark family.

two benchmarks in the jager benchmark family, on which
BoolectorXM still timed out even though 14028 λmset and 239
λi→e patterns were extracted. In total, BoolectorXM was able
to extract 29377 λmset, 13 λmcpy , 10683 λi→e, 58 λi→i, and
120 λi→i+1 patterns with an average size of 40, 7, 12, 39, and
38, respectively. The overall time required by BoolectorXM for
extracting and merging the lambda terms amounts to 41 and
24 seconds, which is less than 0.01% of the total runtime and
therefore negligible.

Benchmark family brubiere contains 11 benchmarks, which
encode a memcpy operation on two non-overlapping memory
regions and verify the correctness of the memcpy algorithm.
The benchmarks are parameterized by the size of the copied
memory region starting from size 2 up to size 12. We generated
21 additional benchmarks with size 2 to 221 (i.e., 2k with 1 ≤
k ≤ 21) in order to evaluate how BoolectorXM scales on these
benchmarks. For comparison we additionally ran the top three
solvers after Boolector at the SMT competition 2014, Yices [4]
version 2.3.1, MathSAT [3] version 5.3.5, and SONOLAR [6]
version 2014-12-04 on these benchmarks. Table III depicts the
runtime of all solvers on the additional memcpy benchmarks
of size 2 to 221, where T denotes out of time, and M denotes
out of memory. BoolectorBase and SONOLAR are able to solve
these benchmarks up to size 25, MathSAT up to size 26, Yices
up to size 29, and BoolectorXM up to size 220. For the largest
instance parsing consumes most of the runtime (∼60%). For
sizes greater than 220, Boolector is not able to fit the input
formula into 7GB of memory, which results in a memory out.

Finally, we measured the impact of lambda extraction and
lambda merging w.r.t. the number of generated lemmas. Since
every lemma generated in Boolector entails an additional call
to the underlying SAT solver, the number of generated lemmas
usually correlates with the runtime of the solver. On the
QF ABV benchmarks commonly solved by BoolectorBase and
BoolectorXM (13242 in total), BoolectorBase generates 872913
lemmas, whereas BoolectorXM generates 158175 lemmas,
which is a reduction by a factor of 5.5. Consequently, the size
of the CNF is reduced by 25% on average (no matter whether
variables or clauses are counted). This is further illustrated in
Fig. 7. On these benchmarks the reduction of the time spent
in the underlying SAT solver is reduced from 59638 to 40101,
i.e., an improvement of 33%.

VI. CONCLUSION

We discussed patterns of array operations occurring in actual
benchmarks and presented a technique denoted as lambda
extraction, which utilizes such patterns to extract compact
and more succinct lambda terms. Another new complementary
technique, called lambda merging, can still be exploited if
lambda extraction is not applicable. These techniques allow to
produce stronger and more succinct lemmas.

In the experimental analysis, based on our SMT solver
Boolector, it was shown that these techniques reduce the
number of generated lemmas by a factor of 5.5, and the overall
size of the bit-blasted CNF by 25% on average. To summarize,
we were able to considerably improve the overall performance

BoolectorBase BoolectorE BoolectorM BoolectorX BoolectorXME BoolectorXM Extracted Patterns

Family Slvd [s] Slvd [s] Slvd [s] Slvd [s] Slvd [s] Slvd [s] λmset λi→e λi→i+1
λmcpy λi→i

bench (119) 119 2 119 3 119 2 119 0.3 119 0.3 119 0.3 208 0 34 0 0
bmc (38) 38 1361 39 769 39 921 39 197 39 88 39 182 256 3 56 0 0

brubiere (98) 75 29455 75 30301 75 28944 75 29359 75 29167 75 28854 0 10 0 0 0
brubiere2 (22) 17 7299 21 2617 18 6927 18 7842 22 2034 20 3241 1392 0 8 0 0

brubiere3 (8) 0 9600 1 8464 1 8435 0 9600 1 8463 1 8435 0 0 0 0 0
btfnt (1) 1 134 1 144 1 134 1 134 1 146 1 134 0 0 0 0 0

calc2 (36) 36 862 36 1528 36 864 36 863 36 1527 36 863 0 0 0 0 0
dwp (4188) 4187 2668 4188 2216 4187 2090 4187 2666 4187 2235 4187 2089 42 0 0 0 0

ecc (55) 54 1792 54 1745 54 1792 54 1845 54 1808 54 1845 125 0 0 0 0
egt (7719) 7719 222 7719 544 7719 221 7719 225 7719 275 7719 212 3893 0 0 0 0

jager (2) 0 2400 0 2400 0 2400 0 2400 0 2400 0 2400 14028 0 239 0 0
klee (622) 622 12942 620 4408 622 12688 622 169 622 126 622 154 9373 0 10049 0 0

pipe (1) 1 10 1 14 1 10 1 10 1 14 1 10 0 0 0 0 0
platania (275) 247 42690 238 58807 256 35005 255 34993 240 56172 258 31189 0 0 0 58 120

sharing (40) 40 2460 40 2459 40 2459 40 2460 40 2458 40 2458 0 0 0 0 0
stp (40) 34 8749 38 4238 39 2755 38 7072 38 4200 39 2695 60 0 297 0 0

stp sa (52) 52 0.7 52 0.5 52 0.6 52 0.6 52 0.5 52 0.7 0 0 0 0 0
totals (13317) 13242 122645 13242 120659 13259 105647 13256 99834 13246 111114 13263 84760 29377 13 10683 58 120

TABLE II
OVERALL RESULTS AND NUMBER OF EXTRACTED PATTERNS ON ALL QF ABV BENCHMARKS GROUPED BY BENCHMARK FAMILY.

Solver k=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
BoolectorBase 0.1 0.4 8 42 296 T T T T T T T T T T T T T T T M

SONOLAR 0.1 0.2 2 15 201 T T T T T T T T T T T T M M M M
MathSAT 0.1 0.3 2 9 70 709 T M T T T T T T T T T T M M M

Yices 0.0 0.0 0.1 0.6 2 8 23 93 371 T T T T T T T T M M M T
BoolectorXM 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.5 1 2 6 14 44 140 463 M

TABLE III
RUNTIME IN SECONDS ON memcpy BENCHMARKS OF SIZE 2k COPIED ELEMENTS. T DENOTES OUT OF TIME, M DENOTES OUT OF MEMORY.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

B
o
o
le

c
to

r X
M

 #
le

m
m

a
s

BoolectorBase #lemmas

Fig. 7. Number of generated lemmas BoolectorBase vs. BoolectorXM on
commonly solved QF ABV benchmarks (13242 in total).

of Boolector and achieve speedups up to orders of magnitude,
particularly on benchmarks from symbolic execution.

We believe, that there are additional patterns in software and
hardware verification benchmarks, which can be extracted as

lambdas and used to speed-up array reasoning further. Our
results also suggest, that a more expressive theory of arrays
might be desirable for users of SMT solvers, in order to allow
more succinct encodings of common array operation patterns.

REFERENCES

[1] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and Verifying
Systems Using a Logic of Counter Arithmetic with Lambda Expressions
and Uninterpreted Functions. In Proc. CAV, volume 2404 of LNCS,
pages 78–92. Springer, 2002.

[2] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proc. USENIX, pages 209–224. USENIX Association, 2008.

[3] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The
MathSAT5 SMT Solver. In Proc. TACAS, volume 7795 of LNCS, pages
93–107. Springer, 2013.

[4] B. Dutertre. Yices 2.2. In Proc. CAV, volume 8559 of LNCS, pages
737–744. Springer, 2014.

[5] S. Falke, F. Merz, and C. Sinz. Extending the theory of arrays: memset,
memcpy, and beyond. In Proc. VSTTE, Selected Papers, volume 8164
of LNCS, pages 108–128. Springer, 2013.

[6] F. Lapschies, J. Peleska, and E. Gorbachuk. System Description:
SONOLAR SMT-COMP 2014. http://smtcomp.sourceforge.net/2014/
systemDescriptions/sonolar-smtcomp2014.pdf, 2014.

[7] J. McCarthy. Towards a Mathematical Science of Computation. In IFIP
Congress, pages 21–28, 1962.

[8] H. Palikareva and C. Cadar. Multi-solver support in symbolic execution.
In Proc. CAV, volume 8044 of LNCS, pages 53–68. Springer, 2013.

[9] M. Preiner, A. Niemetz, and A. Biere. Lemmas on demand for lambdas.
In Proc. DIFTS, volume 1130 of CEUR Workshop Proceedings, 2013.

[10] S. A. Seshia. Adaptive Eager Boolean Encoding for Arithmetic Reason-
ing in Verification. PhD thesis, CMU, 2005.

http://smtcomp.sourceforge.net/2014/systemDescriptions/sonolar-smtcomp2014.pdf
http://smtcomp.sourceforge.net/2014/systemDescriptions/sonolar-smtcomp2014.pdf

