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Abstract—Bit-blasting is the main approach for solving
word-level constraints in SAT Modulo Theories (SMT) for
bit-vector logics. However, in practice it often reaches its
limits, even if combined with sophisticated rewriting and
simplification techniques. In this paper, we extended a re-
cently proposed alternative based on stochastic local search
(SLS) and improve neighbor selection based on down
propagation of assignments. We further reimplemented
the previous SLS approach in our SMT solver Boolector
and confirm its effectiveness. We then added our novel
propagation-based extension and provide an extensive ex-
perimental evaluation, which suggests that combining these
techniques with Boolector’s bit-blasting engine enables
Boolector to solve substantially more instances.

I. INTRODUCTION

SAT Modulo Theories (SMT) procedures for deciding
the satisfiability of first order formulas w.r.t. the theory
of fixed-size bit-vectors usually employ a so called bit-
blasting approach, where the input formula is eagerly
reduced to propositional logic (SAT). While efficient
in practice, it heavily relies on rewriting to simplify
the input prior to bit-blasting, and consequently, on the
underlying SAT solver. This method, however, does in
general not scale if the input size can not be reduced
sufficiently. Lazy approaches based on DPLL(T) as
in [2][7], on the other hand, aim to improve solver
performance by employing a layered approach—in the
latter case in a parallel portfolio setting together with the
standard bit-blasting approach. Attacking the problem
from a different angle, in [5], Fröhlich et al. proposed
a stochastic local search (SLS) procedure to solve bit-
vector formulas directly on the theory level, i.e., on the
word-level, without the need for a SAT solver. In contrast
to [6], where Griggio et al. attempted to reproduce
previous successful applications of SLS in the SAT
domain (e.g. [8]) by integrating a bit-level SLS solver
with the SMT solver MathSAT [3], lifting SLS to the
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theory level delivered promising initial results. However,
we argue that neighborhood exploration, as suggested
in [5], does not yet fully exploit the advantage of working
on the theory level. In essence, it mostly simulates bit-
level local search by focusing on single bit flips.

In this paper, we first reimplemented the word-level
local search approach introduced in [5] in our SMT
solver Boolector, the winner of the QF BV track of the
SMT competition 2015, and confirm its effectiveness as
presented in [5]. We then aim at improving neighbor
selection as in [5] by introducing so called propagation
moves. That is, rather than almost solely relying on bit
flips of bit-vector and Boolean variables (driven by a
scoring function), we introduce an additional strategy to
satisfy lines by propagating assignments from the outputs
to the inputs. We extended the SLS engine in Boolector
with our propagation-based strategy and provide an ex-
tensive experimental evaluation which shows that using
these techniques in combination with Boolector’s bit-
blasting engine in a sequential portfolio manner [10]
considerably improves its performance.

II. SLS FOR QF BV AT A GLANCE

The core SLS engine as implemented in Boolector
is similar to the SLS architecture presented in [5] with
some exceptions, which are mainly due to implemen-
tation issues. In the following, we will highlight all
relevant differences and give an overview of the general
workflow corresponding to the algorithm depicted in
Figure 1. Note that, as in bit-level local search, the given
word-level local search procedure is incomplete in the
sense that it is not able to determine unsatisfiability.

Given a bit-vector formula φ, procedure sat initially
applies several rewriting and simplification techniques
to yield a simplified formula π (line 5), which in the
following serves as the input to the actual SLS procedure.
In contrast to [5], we do not impose restrictions to the bit-
vector logic definition, i.e., we do not require π to be in
Negation Normal Form (NNF). However, without loss of
generality, we do restrict the set of Boolean expressions



1 procedure sat(φ)

2 global α // assignment

3 global s // score

4 global π // simplified formula

5 π := simplify(φ)

6 init_constraint_weights()

7 for i=1 to ∞
8 α := init_inputs(π)

9 s := compute_score()

10 for j=0 to max_moves(i)

11 if all_constraints_sat()

12 return SAT

13 root := select_constraint()

14 var, val := select_move(root)

15 update_assignments(var,val)

16 if is_randomized_move(var,val)

17 update_constraint_weights()

18 update_score()

Fig. 1. The core SLS procedure in pseudo-code.

1 procedure select_move(root)

2 choose depending on a ratio n:m

3 var, val := select_prop_move(root)

4 else

5 var, val := select_sls_move(root)

6 return var, assignment

Fig. 2. Procedure select_move in pseudo-code. Move selection
depends on a ratio n : m of propagation to sls moves.

to the set of unary and binary operators {¬,∧,=, <}.
We further represent formula π as a directed acyclic
graph (DAG) with (possibly) multiple roots, which we
also refer to as constraints.

Given a set of constraints {a1, ..., am} in π, we adopt
the constraint weighting scheme in [5] and associate each
constraint ai with a weight wi, which is initialized with 1
and updated whenever no propagation and no regular
SLS move could be found, and a random variable/value
pair is chosen. As in [5], we then define the notion of
states of a local search algorithm for an SMT bit-vector
problem based on the values of the constraint weights
and the assignments to its inputs, i.e., a set of Boolean
and bit-vector variables. In the following, we refer to 0-
arity bit-vector function symbols as bit-vector variables,
and to numerical constants (e.g. #bvX in SMT-LIB no-
tation [1]) as bit-vector constants. We further implicitly
treat Boolean variables as bit-vector variables of bit-
width one and include them in all definitions over bit-

vector variables if not otherwise noted.
Given the simplified formula π, as in [5], we define

the initial state of the SLS procedure by initializing
all constraint weights with one (line 6) and all bit-
vector variables with zero (line 8), and yield an initial
assignment α. Starting from this initial assignment, the
SLS procedure then iteratively moves to neighboring
states until a satisfying assignment is found. The actual
local search procedure consists of two loops (line 7-12),
where the inner loop (line 10-12) represents a single
round of search, and the outer loop realizes restarts after
a certain number of moves has been performed. Given a
constant c2 (we choose c2 = 100), the maximum number
of moves in a single search round is defined as in [5] as

max_moves(i) =

{
c2 if i is odd
c2 · 2

i
2 if i is even.

In each iteration of the outer loop, we compute the score
for all Boolean expressions (line 9) as a floating value,
and recursively define a scoring function s to drive the
search and assess the quality of an assignment as follows.

Given α and a Boolean variable v, its score s(v, α) is
defined as in [5] as its assignment in α, i.e.,

s(v, α) = α(v).

Analogously, given α and the negation of a Boolean
variable v, the score of ¬v is defined as

s(¬v, α) = ¬α(v).

Given two Boolean expressions a and b, the score of an
and-expression over a and b is adopted from [5] as

s(a ∧ b, α) = 1
2 · (s(a, α) + s(b, α))

s(¬(a ∧ b), α) = max(s(¬a, α), s(¬b, α)).

The score of an equality over bit-vector expressions a
and b of bit-width n is defined as in [5] via the hamming
distance h of their assignments in α, i.e. given a constant
0 ≤ c1 ≤ 1 (we choose c1 = 0.5), we define

s(a = b, α) =


1.0 if α(a) = α(b)

c1 ·
(
1− h(α(a), α(b))

n

)
otherwise

s(a 6= b, α) =

1.0 if α(a) 6= α(b)

0.0 otherwise.

The score definition of an inequality over bit-vector
expressions a and b of bit-width n significantly differs



from [5] due to implementation issues and is defined via
a function m, which is a cheap heuristic to determine
an upper bound on the number of bit flips required such
that α(a) and α(b) match the given inequality relation.
Note that m is pessimistic in the sense that the actual
number of required bit-flips might be smaller. The score
of a bit-vector inequality is then defined as

s(a < b, α) =


1.0 if α(a) < α(b)

c1 ·
(
1− m<(α(a), α(b))

n

)
otherwise

s(a ≥ b, α) =


1.0 if α(a) ≥ α(b)

c1 ·
(
1− m≥(α(a), α(b))

n

)
otherwise.

Lastly, given α, a set of constraints {a1, · · · , am} in
π, and its corresponding set of weights {w1, · · · , wm},
we define the overall score of formula π as in [5] as
s(π, α) = w1 · s(a1, α) + · · · + wm · s(am, α). Note
that the score of a constraint ai is normalized and
therefore bound to 0 ≤ s(ai, α) ≤ 1. The overall score
of formula π, however, may be greater than 1.

As in [5], we perform score computation bottom-up,
i.e., starting from the inputs. However, due to the fact
that we do not require formula π to be in NNF, it is not
possible to employ what [5] refers to as “early pruning”.
Hence, in order to still minimize the overhead for score
computation, in contrast to [5] we do not recompute the
score for all nodes in a formula’s DAG representation
on update. Rather, we identify the cone of influence, i.e.,
those parts of the formula affected by changing a given
input, and update its score accordingly (line 18).

In each iteration of the inner loop (lines 10-12),
depending on a yet unsatisfied constraint root and
assignment α, a variable var and a value val is selected
(line 14), and assignment α and all scores are updated
accordingly (lines 15 and 18). Note that given constraints
{a1, · · · , am} in π, constraint root is selected as in [5]
as the unsatisfied constraint ai that, given a constant c3
(we choose c3 = 20), maximizes

s(ai, α) + c3 ·
√

log selected(ai)

nmoves
,

where selected(ai) is the number of times ai has already
been selected, and nmoves is the overall number of
moves performed so far.

In the general SLS case, i.e., without enabling our ad-
ditional propagation strategy, we adopt the notion of (ex-
tended) neighborhood for regular SLS moves from [5],

1 procedure select_sls_move(root)

2 V := select_vars(root)

3 choose with probability wp

4 var, val := random_walk(V)

5 else

6 var, val := find_best_move(V)

7 if (var, val) = none

8 var, val := randomize(V)

9 return var, val

Fig. 3. A regular SLS move in pseudo-code.

which includes single bit flips, increment, decrement,
and bitwise negation. Move selection is then performed
as in [5] corresponding to Figure 3 as follows. Given
an unsatisfied constraint root, all bit-vector variables
reachable while traversing from the root to the inputs
are collected into a set of candidate variables V (line 2).
Out of all possible combinations in V and its extended
neighborhood, the variable/neighbor pair with the most
improvement of the overall score s(π, α) is determined
as the best move (line 6). If no best move is found,
a random variable and value is chosen (line 8), and the
weights of all constraints are updated as in [5] (Figure 1,
line 17). That is, with a probability sp (we choose
sp = 0.95), the weights of all unsatisfied constraints are
increased by 1. Otherwise, the weights of all satisfied
constraints are decreased to a minimum of 1.

Note that in the general SLS case, all moves performed
are regular SLS moves as described in Figure 3, which
corresponds to a ratio 0 :∞ of propagation moves to
regular SLS moves in Figure 2.

Further, as in [5], select_sls_move optionally
supports so called random walks, i.e., if enabled, with a
probability wp (we choose wp = 0.1) a random move
out of all variable/neighbor combinations is chosen.

III. PROPAGATION MOVES

The notion of (extended) neighborhood in [5] com-
bines a simple SAT-style SLS neighborhood relation,
given by flipping single bits of a variable assignment,
with three additional bit-vector moves: increment, decre-
ment, and bitwise negation. With a neighborhood size
of n+ 3 for a single bit-vector variable of bit-width
n, it is easy to see that exploring its neighborhood is
dominated by bitwise flips. As a consequence, neighbor-
hood exploration in [5] mainly simulates bit-level local
search without fully exploiting possible benefits of the
word-level. Further, for variables with increasing bit-
width, SLS moves as described in Section II become
increasingly expensive.



Even though the approach in [5] showed promising
results on the Sage2 benchmark family, it still struggles
in general in comparison to state-of-the-art bit-blasting
approaches. Especially when dealing with a certain type
of problem, the shortcomings of the chosen neighbor-
hood relations become evident. Consider the following
example in SMT-LIB notation:

(set-logic QF_BV)

(declare-fun v () (_ BitVec 65))

(assert (= (_ bv18446744073709551617 65)

(bvmul (_ bv274177 65) v)))

(check-sat)

(exit)

Assuming that we disable possible simplification tech-
niques, it is not possible to determine the (single) solu-
tion v = 67280421310721 within a time limit of 1200s
on a 3.4GHz Intel Core i7-2600 machine (355837 moves,
21 restarts) with the SLS procedure as described in
section II. With our propagation-based strategy, however,
the example above is solved instantly within one single
propagation move. In this section, we will introduce this
strategy and its application in detail as follows.

A. Propagation-Based Move Selection

When enabling our propagation-based strategy, within
the core procedure as described in Figure 1, we support
three different scenarios, depending on the type of move
to be selected (line 14):

(i) all moves performed are propagation moves
(i.e., propagation and regular SLS moves are per-
formed with a ratio ∞ : 0)

(ii) propagation and regular SLS moves are performed
with a ratio n : m

In case of propagation moves, move selection is per-
formed corresponding to Figure 4 as follows. Given an
unsatisfied constraint root, a simplified formula π, and
assignment α, we force root to be true (line 3) and
iteratively propagate its new assignment along one path
towards the inputs while assuming all other paths to be
fixed with respect to assignment α.

In each iteration, path selection (lines 15-26) is im-
plemented as choosing one of the current node’s inputs,
which in general happens randomly except for two cases.
If the current node is an IF-THEN-ELSE (ITE) node
(line 15), with probability ip (we choose ip = 0.1), the
first (and else, the second) out of two options is chosen:

(1) flip the condition, or
(2) assume the assignment of the condition to be fixed

and follow the enabled branch.

1 procedure select_prop_move(root)

2 cur := root

3 val := 1

4

5 loop

6 if is_bv_var(cur)

7 return cur, val

8

9 // conflict

10 if not has_non_const_input(cur)

11 // recover w. regular SLS move

12 return select_sls_move(root)

13

14 // path selection

15 if is_ite(cur)

16 if flip_cond()

17 cur := get_cond_node(cur)

18 val := flip_bv(α(cur))

19 else

20 cur := get_enabled_branch(cur)

21 continue

22 if is_boolean_and(cur) and

23 has_exactly_one_ctrl_input(cur)

24 inp := get_ctrl_input(cur)

25 else

26 inp := select_random_input(cur)

27 // path propagation

28 oth := get_other_inputs(cur,inp)

29 val := compute_value(cur,val,oth)

30

31 // conflict

32 if val = none

33 // recover w. regular sls move

34 return select_sls_move(root)

35

36 cur := inp

Fig. 4. A propagation move in pseudo-code.

In (1), we reset cur to the condition and val to the
flipped value of its assignment in α (lines 17-18). In (2),
we reset cur to the enabled branch (line 20) before
continuing with the next iteration.

If the current node is a Boolean AND node (line 22),
on the other hand, path selection is based on the notion
of (a posteriori) observability don’t cares as defined
in the context of ATPG [9]. Given an unsatisfied con-
straint root, while propagating its flipped assignment
α(root) = 1 along one path towards the inputs, as a



consequence, the assignments of all AND-gates along
this path are flipped as well. Given a concrete assignment
to the inputs of an AND-gate, however, we can determine
lines that do not influence its output under the current
assignment. Consequently, if the output of an AND node
is currently assigned to 0 (i.e., to be flipped to 1), we
follow its controlling input, i.e., the input with control-
ling value 0, if only one of its inputs is controlling.
Else, we choose randomly. Note that the procedure in
Figure 4 aims at finding an assignment for a bit-vector
variable. As a consequence, during path selection, we do
not choose bit-vector constants as input inp. If a node
cur has only bit-vector constants as inputs, assignment
val conflicts with the inputs of cur and we recover
with a regular SLS move (line 12).

After selecting a path, we implement down propa-
gation of assignments by computing a new assignment
for input inp as the inverse of the current node given
its assignment and the assignment to its other inputs,
which are assumed to be fixed (line 29). Note that in
general, if the other inputs are not bit-vector constants
and such an inverse value does not exist, procedure
compute_value concludes with an assignment for the
chosen input that matches the assignment of the current
node, disregarding its other inputs. However, if its other
inputs are bit-vector constants, it concludes with none
and we again recover with a regular SLS move (line 34).
Finally, if we were able to successfully propagate all
assignments along a path from root to a bit-vector
variable, we conclude with this variable and its new
assignment (line 6).

Note that procedure select_prop_move option-
ally supports to force a random walk rather than per-
forming a regular SLS move (where random walks,
if enabled, occur only with probability wp, otherwise)
when recovering from a conflicting assignment (lines 12
and 34).

B. Propagating Assignments via Inverse Computation

Down propagation of assignments is implemented by
procedure compute_value via computing the inverse
of a given node (representing a bit-vector operation)
given its assignment and the assignment of all but one
of its inputs. Without loss of generality, we restrict
the set of bit-vector operations to {=, bvnot, bvult,
bvshl, bvshr, bvadd, bvand, bvmul, bvudiv,
bvurem, concat, extract} as defined in the SMT-
LIB standard v2[1], where all but bvnot and extract
are binary operations. Note that for some operations in
this set no well-defined inverse operation exists. In that
case, procedure compute_value in general produces

non-unique values via randomization (of bits or bit-
vectors). Further note that given the assignment of the
bit-vector operation and one of its inputs, if the input
is not a bit-vector constant and no inverse value could
be found, compute_value disregards the assignment
of the given input and chooses an inverse value that
matches the assignment of the given operation. However,
if the input is a bit-vector constant, its assignment
conflicts with the assignment of the given operation, and
compute_value concludes with none.

In the following, we assume that given a bit-vector v,
its least significant bit (LSB) is positioned at index 0
(LSB = v[0]). We further denote a bit-vector slice ex-
pression (extract in SMT-LIB notation) from index i
to j (incl.) with v[i : j] and assume that i and j
are numerical constants. Procedure compute_value
determines the assignment x of an input of a given
operation, given its assignment c and the assignment a
of its other input (if any), as follows:

= Given a bit-vector expression c := a = x or
c := x = a, its inverse w.r.t. x is defined as x := a if
c = 1, and a random value other than a, otherwise.

bvnot Given a bit-vector expression c :=∼ x, its in-
verse w.r.t. x is defined as x :=∼ c.

bvult Given a bit-vector expression c := a < x, we
determine its inverse w.r.t. x as follows:

1) If c = 1 and a 6= 2n − 1, we choose a random
value for x such that a < x.

2) If c = 0, we choose a random value for x such that
a ≥ x.

3) If a is not a bit-vector constant, and neither 1)
nor 2) apply, we disregard a and choose a random
value for x such that x > 0.

If a is a bit-vector constant and neither 1) nor 2) apply,
the current value of c is conflicting with a and we can
not find a value for x.

Given a bit-vector expression c := x < a, we deter-
mine its inverse w.r.t. x as follows:

1) If c = 1 and a 6= 0, we choose a random value
for x such that x < a.

2) If c = 0, we choose a random value for x such that
x ≥ a.

3) If a is not a bit-vector constant, and neither 1)
nor 2) apply, we disregard a and choose a random
value for x such that x < 2n − 1.

If a is a bit-vector constant and neither 1) nor 2) apply,
the current value of c is conflicting with a and we can
not find a value for x.



bvshl Given a bit-vector expression c := a << x, its
inverse w.r.t. x is defined as the number n0 of least
significant bits set to 0 in c. If a is a bit-vector constant
and n0 is equal to the bit-width of a, or if a << n0 and c
do not match, the current value of c is conflicting with a
and we can not find a value for x.

Given a bit-vector expression c := x << a, its inverse
w.r.t. x is defined as x := c >> a. Note that the bits
shifted in may be set arbitrarily. If a is a bit-vector
constant and the a least significant bits in c are not set
to 0, the current value of c is conflicting with a and we
can not find a value for x.

bvshr is defined analogous to bvshl.

bvadd Given a bit-vector expression c := a+ x or
c := x+ a, its inverse w.r.t. x is defined as x := c− a.

bvand Given a bit-vector expression c := a & x or
c := x & a, its inverse w.r.t. x is defined depending on
the bits set in both a and c, i.e., given position i,

• if c[i] = 1, then x[i] := 1
• if c[i] = 0 and a[i] = 1, then x[i] := 0
• if c[i] = 0 and a[i] = 0, then x[i] := dc

Note that don’t care values (dc) may be set arbitrarily.
If a is a bit-vector constant, and a[i] = 0 for any posi-
tion i where c[i] = 1, the current value of c is conflicting
with a and we can not find a value for x.

bvmul Given a bit-vector expression c := a · x or
c := x · a of bit-width n, we determine its inverse w.r.t. x
as follows.

1) If a is a divisor of c, then x := c/a.
2) If gcd(a, 2n) = 1, we determine the multiplicative

inverse a−1 of value a via the Extended Euclidean
algorithm and define x := a−1 · c.

3) If neither applies and a is not a bit-vector constant,
we try if any v ∈ {7, 5, 3, 2} is a divisor of c. If
so, we choose x := c/v, and x := 1, otherwise.

If a is a bit-vector constant and neither 1) nor 2) apply,
the current value of c is conflicting with a and we can
not find a value for x.

bvudiv Given a bit-vector expression c := a/x of bit-
width n, we determine its inverse w.r.t. x as follows:

1) If a = c = 0, we choose a random value for x.
2) If a 6= 0, and c is a divisor of a, then x := a/c.
3) If a is not a bit-vector constant, and neither 1)

nor 2) apply, we disregard a, and choose a random
value x such that x · c does not overflow.

If a is a bit-vector constant and neither 1) nor 2) apply,
the current value of c is conflicting with a and we can

not find a value for x.
Given a bit-vector expression c := x/a of bit-width n,

we determine its inverse w.r.t. x as follows:
1) If a = 0 and c = 2n − 1, we choose a random

value for x. This is due to the fact, that given a
value v of bit-width n, Boolector handles division
by zero as v/0 = 2n − 1.

2) If a 6= 0, and c · a does not overflow, then
x := c · a.

3) If a is not a bit-vector constant, and neither 1)
nor 2) apply, we disregard a, choose a random
value v such that v · c does not overflow, and define
x := c · v.

If a is a bit-vector constant and neither 1) nor 2) apply,
the current value of c is conflicting with a and we can
not find a value for x.

bvurem Given a bit-vector expression c := a % x of
bit-width n, we determine its inverse w.r.t. x as follows:

1) If a = c and a 6= 2n − 1, we choose a random
value for x such that x > a.

2) If a > c and a− c > c, since c+m · x = a we
choose m = 1 and define x := a− c.

3) If a is not a bit-vector constant, and either a > c
and a− c ≤ c, or a < c and c < 2n − 1, we disre-
gard a and choose a random value for x such that
x > c.

If a = c = 2n − 1, or if a is a bit-vector constant and 2)
does not apply, the current value of c is conflicting with a
and we can not find a value for x.

Given a bit-vector expression c := x % a of bit-
width n, we determine its inverse w.r.t. x as follows:

1) If a > c, with probability 0.5 we either choose
a) x := c, or,
b) since c+m · a = x we choose m such

that c+m · a does not overflow and define
x := c+m · a. If c+ a overflows, but a is
not a bit-vector constant, we choose a).

2) If a ≤ c and a is not a bit-vector constant, we
choose x := c.

If a is a bit-vector constant and 1) does not apply, current
value of c is conflicting with a and we can not find a
value for x.

concat Given a bit-vector expression c := a ◦ x
where a is of bit-width m and c of bit-width n, its inverse
w.r.t. x is defined as the slice x := c[0 : n−m− 1]. If a
is a bit-vector constant and c[n−m : n− 1] 6= a, the
current value of c is conflicting with a and we can not
find a value for x.

Given a bit-vector expression c := x ◦ a where a is of
bit-width m and c of bit-width n, its inverse w.r.t. x is



defined as the slice x := c[m : n− 1]. If a is a bit-vector
constant and c[0 : m− 1] 6= a, the current value of c is
conflicting with a and we can not find a value for x.

extract Given a bit-vector expression c := x[l : u],
where x is of bit-width n (and c of bit-width u− l + 1),
we determine its inverse w.r.t. x given a position i
as follows. If l ≥ i ≤ u, then x[i] = c[i− l]. Else, we
choose a random value for x[i].

IV. EXPERIMENTS

We implemented the core SLS engine and its
propagation-based extension in our SMT solver Boolec-
tor as described in Sections II and III, and provide an
evaluation of the following configurations.

1) BB: The core Boolector engine, which uses a bit-
blasting approach. This configuration is a version
close to the version that won the QF BV track of
the SMT competition 2015.

2) BSLS: The SLS Boolector engine, optionally with
random walks enabled (+RW).

3) BPROP: The SLS Boolector engine with our
propagation-based strategy enabled. This config-
uration by default uses propagation moves only.
It optionally supports the configuration of a ratio
n : m of propagation to regular SLS moves (+n:m),
and conflict recovery via random walk rather than
performing a regular SLS move (+FORCERW).

We further compare our Boolector configurations
BSLS(+RW) against the original implementation of [5]
in Z3 [4] and refer to version 4.4.0 of Z3 with its SLS
engine enabled as configuration Z3SLS. Note that Z3SLS

enables random walks by default.
We compiled a benchmark set from all benchmarks

with status sat and unknown in the QF BV category
of the SMT-LIB1 benchmark library, and excluded all
benchmarks that configuration BB proved to be unsatisfi-
able within a time limit of 1200 seconds (16434 instances
in total). We excluded 449 benchmarks from the Sage2
benchmark family that were not SMT-LIB v2 compliant
due to non-compliant operators.

All experiments were performed on a cluster with 30
nodes of 2.83GHz Intel Core 2 Quad machines with
8GB of memory using Ubuntu 14.04.2 LTS. The results
in [5] indicate that even though there still exists a con-
siderable gap between the performance of state-of-the-
art bit-blasting and word-level local search as introduced
in [5], the latter significantly outperforms bit-blasting on
several instances. Based on these findings, we evaluated

1http://www.smtlib.org

BB BSLS BSLS+RW Z3SLS
Family Slvd [s] Slvd [s] Slvd [s] Slvd [s]

asp (376) 46 3543 0 3760 0 3760 0 3760
bench (223) 223 0.1 223 0.0 223 0.0 223 0.0

bmc (22) 21 57 11 118 12 115 7 150
brubiere2 (10) 3 72 10 4.3 10 3.1 1 90

brubiere3 (6) 4 46 6 4.0 6 0.2 2 40
brubiere4 (10) 0 100 9 10 9 10 10 0.0

calypto (13) 4 93 4 92 3 100 3 100
check2 (1) 1 0.0 1 0.0 1 0.0 0 10
crafted (1) 1 0.0 1 0.0 1 0.0 1 0.0
dwp (103) 103 0.3 103 0.0 103 0.0 103 0.9

fft (19) 4 160 0 190 0 190 0 190
float (126) 23 1095 2 1253 0 1260 0 1260

gulwani (6) 5 17 1 50 1 51 1 50
mcm (155) 14 1452 8 1508 5 1517 8 1474
pspace (21) 0 210 21 16 21 16 0 210

rubik (3) 2 17 0 30 0 30 0 30
RWS (20) 13 98 0 200 0 200 0 200

sage (6236) 6236 2179 5315 10497 5275 10626 5969 5261
Sage2 (6981) 1037 63023 604 64307 620 64289 1597 56890
spear (1675) 1524 7435 1188 6348 1187 6336 456 13289

stp (1) 0 10 0 10 0 10 0 10
stp s (149) 149 3.6 127 410 128 421 149 6.1
tacas07 (3) 2 20 2 10 2 10 2 10
uclid (262) 258 426 29 2533 23 2551 259 297

VS3 (10) 0 100 0 100 0 100 0 100
wienand (4) 0 40 0 40 0 40 0 40

totals (16436) 9673 80197 7665 91491 7630 91635 8791 83262

TABLE I
RESULTS BY BENCHMARK FAMILY FOR CONFIGURATIONS BB,

BSLS, BSLS+RW, AND Z3SLS WITH A TIME LIMIT OF 10 SECONDS.

our BSLS and BPROP configurations with regard to an
application within a sequential portfolio setting and set
a time limit of 10 seconds for all solver instances of
these and the Z3SLS configurations. The memory limit
for each solver instance was set to 7GB. In case of a
time or memory out, a penalty of the given time limit
was added to the total CPU time.

Table I summarizes the results of configurations BB,
BSLS, BSLS+RW, and Z3SLS on our benchmark set,
grouped by family, within a time limit of 10 seconds.
Configuration BSLS+RW corresponds to the configura-
tion of Z3SLS as both enable random walks, whereas
configuration BSLS disables random walks by default.
On family pspace, Z3SLS terminated with an error, for
which a penalty of the given time limit was added
to the total CPU time. Compared to the bit-blasting
configuration BB, as in [5], the overall results of con-
figuration BSLS+RW confirm both the effectiveness of
the SLS approach on certain instances, and the over-
all gap in performance. The performance of configu-
rations BSLS+RW and Z3SLS, however, considerably
differs on some benchmark families. Z3SLS outperforms
BSLS+RW by 694 and 977 instances on the sage and
Sage2 benchmarks, whereas on the spear family, with

http://www.smtlib.org


BSLS BPROP+1:100 BPROP+1:10 BPROP+1:1 BPROP+10:1 BPROP+100:1 BPROP
Family Slvd [s] Slvd [s] Slvd [s] Slvd [s] Slvd [s] Slvd [s] Slvd [s]

asp (376) 0 3760 0 3760 0 3760 0 3760 0 3760 0 3760 0 3760
bench (223) 223 0.0 223 0.1 223 0.1 223 0.0 223 0.0 223 0.0 223 0.0

bmc (22) 11 118 12 116 12 110 12 118 10 123 10 122 11 118
brubiere2 (10) 10 4.3 10 4.5 10 4.2 10 3.2 10 4.1 10 4.2 10 4.2

brubiere3 (6) 6 4.0 6 19 6 3.8 6 13 6 13 6 9.5 6 12
brubiere4 (10) 9 10 9 10 9 10 10 5.1 10 7.7 10 7.7 10 7.7

calypto (13) 4 92 4 96 3 100 4 90 4 90 3 100 3 100
check2 (1) 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0
crafted (1) 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0
dwp (103) 103 0.0 103 0.0 103 0.0 103 0.0 103 0.0 103 0.0 103 0.0

fft (19) 0 190 0 190 0 190 1 183 0 190 0 190 0 190
float (126) 2 1253 3 1246 0 1260 3 1248 7 1217 7 1209 8 1206

gulwani (6) 1 50 1 50 1 51 1 52 1 58 0 60 0 60
mcm (155) 8 1508 8 1508 7 1506 9 1500 6 1513 5 1519 5 1519
pspace (21) 21 16 21 16 21 16 0 210 0 210 21 94 0 210

rubik (3) 0 30 0 30 0 30 0 30 0 30 0 30 0 30
RWS (20) 0 200 0 200 0 200 0 200 0 200 0 200 0 200

sage (6236) 5315 10497 5278 10604 5256 10868 5217 11330 5097 11925 5088 11984 5133 11827
Sage2 (6981) 604 64307 626 64212 635 64205 571 64614 615 64456 589 64536 606 64420
spear (1675) 1188 6348 1188 6339 1189 6324 1316 5190 1482 3087 1483 3039 1485 3029

stp (1) 0 10 0 10 0 10 0 10 0 10 0 10 0 10
stp s (149) 127 410 127 410 130 407 132 366 124 413 127 398 127 400
tacas07 (3) 2 10 2 10 2 10 2 10 2 10 2 10 2 10
uclid (262) 29 2533 28 2534 13 2553 1 2618 9 2557 17 2560 21 2555

VS3 (10) 0 100 0 100 0 100 0 100 0 100 0 100 0 100
wienand (4) 0 40 0 40 0 40 0 40 0 40 0 40 0 40

totals (16436) 7665 91491 7651 91505 7622 91759 7623 91690 7711 90015 7706 89983 7755 89808

TABLE II
RESULTS BY BENCHMARK FAMILY FOR CONFIGURATIONS BSLS, BPROP (PROPAGATION MOVES ONLY), AND BPROP+N:M (WITH RATIO

1:100, 1:10, 1:1, 10:1, AND 100:1 OF PROPAGATION MOVES TO REGULAR SLS MOVES) WITH A TIME LIMIT OF 10 SECONDS.

a difference of 731 instances, it is vice versa. Running
BSLS+RW with different seeds for initializing the ran-
dom number generator, however, has almost no influence
on the number of solved instances. Out of 10 randomly
seeded runs of configuration BSLS+RW on our bench-
mark set, we observed a maximum deviation of 0.04%
in the number of solved instances. We therefore believe
that the difference in performance between BSLS+RW

and Z3SLS is mainly due to the following reasons.
Similar to the influence of rewriting and simplification
techniques on the performance of state-of-the-art bit-
blasting approaches, rewriting and the choice of rewrit-
ing and simplification techniques considerably influence
the performance of the actual SLS procedure. Given
our benchmark set and a time limit of 10 seconds,
Boolector’s SLS engine in configuration BSLS+RW with
rewriting and simplification disabled solves 2166 less
instances. The choice of rewriting and simplification
techniques employed by Boolector and Z3 differs sig-
nificantly, which might be one reason for the difference
in performance on certain benchmark families. Further,
even though BSLS+RW corresponds to Z3SLS as far
as implementation issues allowed, both still differ in
several implementation aspects, in particular, the scoring

function for the < operator, which might influence the
performance of the SLS approach considerably.

The overall results in Table I imply that enabling ran-
dom walks in Boolector’s SLS engine does not improve
its performance. We therefore use configuration BSLS as
base for our further experiments.

Further note that even though the last two authors of
this paper were also involved in [5], the reimplementa-
tion of the approach in [5] within Boolector by the first
author should be considered as independent. The results
of Table I, as a consequence, should be considered as an
independent confirmation of the results in [5].

Table II compares the results of our base SLS configu-
ration BSLS to configuration BPROP (propagation moves
only), and BPROP+100:1, BPROP+10:1, BPROP+1:1,
BPROP+1:10, and BPROP+1:100 (with ratios 100:1,
10:1, 1:1, 1:10, and 1:100 of propagation moves to
regular SLS moves) on our benchmark set, grouped by
family, within a time limit of 10 seconds. Overall, the
results suggest that configurations with a higher ratio
of propagation to regular SLS moves perform better in
terms of solved instances and run time. With an addi-
tional 90 solved instances, configuration BPROP shows
the most improvement in comparison to configuration



BSLS BPROP BPROP+FRW
Family Slvd [s] Slvd [s] Slvd [s]

asp (376) 0 376 0 376 0 376
bench (223) 223 0.0 223 0.0 223 0.2

bmc (22) 10 13 10 13 9 14
brubiere2 (10) 9 2.7 9 3.3 3 7.0

brubiere3 (6) 4 2.0 4 3.7 6 2.1
brubiere4 (10) 9 1.0 8 2.0 8 2.0

calypto (13) 3 10 3 10 5 9.0
check2 (1) 1 0.0 1 0.0 1 0.0
crafted (1) 1 0.0 1 0.0 1 0.0
dwp (103) 103 0.0 103 0.0 103 0.0

fft (19) 0 19 0 19 0 19
float (126) 0 126 3 124 2 125

gulwani (6) 1 5.3 0 6.0 0 6.0
mcm (155) 1 155 2 154 1 155
pspace (21) 20 16 0 21 0 21

rubik (3) 0 3.0 0 3.0 0 3.0
RWS (20) 0 20 0 20 0 20

sage (6236) 5038 1385 4971 1418 4769 1579
Sage2 (6981) 509 6605 473 6657 452 6614
spear (1675) 819 1249 1299 604 1662 187

stp (1) 0 1.0 0 1.0 0 1.0
stp s (149) 74 94 73 94 23 127
tacas07 (3) 2 1.2 2 1.2 2 1.2
uclid (262) 0 262 0 262 0 262

VS3 (10) 0 10 0 10 0 10
wienand (4) 0 4.0 0 4.0 0 4.0

totals (16436) 6827 10361 7185 9807 7270 9544

TABLE III
RESULTS BY BENCHMARK FAMILY FOR CONFIGURATIONS BSLS,

BPROP, AND BPROP+FRW WITH A TIME LIMIT OF 1 SECOND.

BSLS. Out of the 7755 instances solved by BPROP, more
than 56% (4366 instances) were solved with propagation
moves only, i.e., no recovery by means of a regular
SLS move was necessary; and for roughly 85% (6568
instances), less than 8 recovery moves were required.
When recovering with a random walk rather than a reg-
ular SLS move, i.e., in configuration BPROP+FRW, out
of 7540 solved instances roughly 72% (5427 instances)
required less than 8 recovery moves. This suggests that
regular SLS recovery moves, even though expensive,
yield a better performance. Given a time limit of 1
second, though, as depicted in Table III, configuration
BPROP+FRW outperforms BPROP by 85 instances. In
particular on benchmark family spear, within 1 second
and compared to configurations BB, BSLS, and BPROP,
configuration BPROP+FRW solves 1586, 843, and 363
more instances. These results suggest a combination of
configurations BB and BPROP+FRW into configuration
BB+BPROP+FRW in a sequential portfolio manner [10],
where configuration BPROP+FRW is run prior to bit-
blasting for a given time limit of 1 second. In the
following, configuration BB+BPROP+FRW is a virtual
configuration as it has not been realized within Boolector
yet. All results attributed to BB+BPROP+FRW have been

BB BB+BPROP+FRW
Family Slvd [s] Slvd [s]

asp (376) 285 147790 285 148075
bench (223) 223 0.1 223 0.2

bmc (22) 22 59 22 72
brubiere2 (10) 10 843 10 848

brubiere3 (6) 6 49 6 2.1
brubiere4 (10) 1 10981 8 2400

calypto (13) 7 9308 7 8358
check2 (1) 1 0.0 1 0.0
crafted (1) 1 0.0 1 0.0
dwp (103) 103 0.3 103 0.0

fft (19) 5 17014 5 17020
float (126) 94 53264 94 53356

gulwani (6) 6 34 6 40
mcm (155) 56 135932 56 135983
pspace (21) 21 688 21 709

rubik (3) 3 94 3 98
RWS (20) 16 5032 16 5048

sage (6236) 6236 2179 6236 3527
Sage2 (6981) 5621 2213660 5648 2148247
spear (1675) 1671 12747 1675 327

stp (1) 1 16 1 16
stp s (149) 149 3.6 149 131
tacas07 (3) 3 29 3 20
uclid (262) 262 434 262 696

VS3 (10) 3 8844 3 8847
wienand (4) 0 4800 0 4800

totals (16436) 14806 2623801 14844 2538620

TABLE IV
RESULTS BY BENCHMARK FAMILY FOR CONFIGURATIONS BB AND

BB+BPROP+FRW WITH A TIME LIMIT OF 1200 SECONDS.

determined based on the results of configuration BB

and BPROP+FRW on our benchmark set with a time
limit of 1200 and 1 seconds, respectively, as follows.
On instances where configuration BPROP+FRW timed
out within 1 second, a penalty of 1 second has been
added to the result of configuration BB, else the result
of configuration BPROP+FRW was chosen.

Table IV summarizes the results of configurations BB

and BB+BPROP+FRW on our benchmark set, grouped by
family, within a time limit of 1200 seconds. Even though
invoking the BPROP+FRW engine prior to bit-blasting
produces an overhead of 1 second for instances that
BPROP+FRW can not solve within the given time limit,
the combination of both engines considerably improves
the performance of the bit-blasting approach both in
terms of solved instances and total run time. Overall,
configuration BB+BPROP+FRW is able to solve 38 more
instance than configuration BB, while requiring only
96% of its total runtime. In particular benchmark fami-
lies brubiere4, Sage2, and spear show the most improve-
ment with speed-ups of up to a factor of 39. Even when
considerung the 1 second overhead of BB+BPROP+FRW

on each benchmark of the full QF BV benchmark set
of the SMT-LIB, which is a total of 50429 instances



including all unsat benchmarks, the performance gain
of 85181 seconds on the benchmarks of our set of
16434 instances still yields a performance improvement
in terms of the overall run time.

The results in Table IV are further illustrated in
Figure 5 by means of a scatter plot. It shows that
configuration BB+BPROP+FRW solves benchmarks up
to orders of magnitude faster than the pure bit-blasting
approach BB. In fact, 117, 582, and 1320 instances
are solved more than 1000, 100, and 10 times faster
when combining BPROP+FRW with BB. The overhead
generated by unsuccessful BPROP+FRW invocations, i.e.,
for instances that cannot be solved by BPROP+FRW

within the 1 second time limit, does not outweigh the
performance gain by the successful ones.

Finally, we tried to further increase the time limit for
BPROP+FRW of configuration BB+BPROP+FRW to 2 and
3 seconds. Compared to the 1 second time limit, with
a time limit of 2 seconds, BB+BPROP+FRW solves an
additional 8 instances while requiring 3500 seconds less
run time. The best results, however, are achieved with a
time limit of 3 seconds, where BB+BPROP+FRW solves
an additional 14 instances requiring 3700 seconds less
run time compared to the 1 second time limit.

V. CONCLUSION

In this paper, we reimplemented the word-level local
search procedure presented in [5] within our SMT solver
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Fig. 5. BB vs. BB+BPROP+FRW on our benchmark set with a time
limit of 1200 seconds and a 1 second time limit for BPROP+FRW.

Boolector and independently confirmed its effectiveness.
We further introduced an extension based on propagating
assignments from the outputs to the inputs and evaluated
our approach in particular with respect to a combination
with Boolector’s bit-blasting engine, which considerably
improves its performance on satisfiable instances.

We chose all parametric values either as in [5], or such
that they provide a good overall performance if newly
introduced. Further optimizing those values with respect
to performance is left to future work.

Our technique currently still relies on regular SLS tac-
tics in certain conflict scenarios. However, this might not
be necessary if path propagation via inverse computation
guarantees that search space is not inadvertently pruned
on conflict. This might currently be the case due to short
cuts introduced for some bit-vector operations when e.g.
choosing the simplest (and not some randomized) valid
solution. Extending inverse computation to eliminate
this kind of short cuts, and the implementation of the
sequential portfolio style combination of our techniques
and Boolector’s state-of-the-art bit-blasting engine is left
to future work.

Binaries of Boolector and all log files of our experimental evaluation
can be found at http://fmv.jku.at/difts15-prop.
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