
Lemmas on Demand for the Extensional Theory of Arrays

Robert Brummayer Armin Biere
Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

ABSTRACT
Deciding satisfiability in the theory of arrays, particularly
in combination with bit-vectors, is essential for software and
hardware verification. We precisely describe how the lem-
mas on demand approach can be applied to this decision
problem. In particular, we show how our new propagation
based algorithm can be generalized to the extensional theory
of arrays. Our implementation achieves competitive perfor-
mance.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic; I.2.3 [Artificial Intelligence]: De-
duction and Theorem Proving; B.5.2 [Register-Transfer-
Level Implementation]: Verification; D.2.4 [Software
Engineering]: Software/Program Verification

Keywords
Decision Procedure, Satisfiability, SAT, Arrays, SMT

1. INTRODUCTION
Reasoning about bit-vectors and arrays is an active area of

research and is successfully applied to hardware and software
verification. Particularly, deciding satisfiability of first-order
formulas, with respect to theories, known as Satisfiability
Modulo Theories (SMT) [15, 9, 16, 2, 11, 18], increasingly
gains importance.

SMT approaches can be roughly divided into eager and
lazy [19]. In the lazy lemmas on demand [12, 14, 1, 13, 10]
approach, theory constraints are added on demand, rather
than up front. The SAT solver is used as a black box and
generates concrete assignments for the abstracted formula.
If an assignment violates the theory, then a lemma that rules
out this assignment is added as refinement. An important
aspect of this approach is that the theory solver is used as
consistency checker for concrete assignments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SMT ’08, July 7-8, 2008, Princeton, New Jersey, USA
Copyright 2009 ACM 1-60558-440-9/09/02 ...$5.00.

Previous work [12, 14, 1, 13, 10] lacks a precise descrip-
tion on how lemmas on demand can be generated for arrays,
particularly, if equalities on arrays are involved. Introducing
array equalities, particularly inequalities, makes the theory
extensional. Prior work on arrays typically maintains con-
gruence on arrays, but not necessarily extensionality. Our
approach handles both.

Extensionality has many applications in hardware and
software verification. A typical example in hardware is con-
formance of a pipelined machine to a sequential implemen-
tation of its instruction set architecture, in particular with
memory. On the software side, extensionality makes it easy
to specify that algorithms have the same memory seman-
tics. In both cases, the algorithms respectively machines
are symbolically executed on one big array, which models
memory. Finally, the memories are compared with the help
of extensionality.

Previous approaches to decide extensionality use eager
rewriting [20], which blows up in space, as our experiments
confirm. Our main contribution is a novel lemmas on de-
mand algorithm for the extensional theory of arrays. We
focus on bit-vectors, but our approach can be easily gen-
eralized to other theories. We precisely describe our new
propagation based algorithm for the non-extensional case,
and generalize it to the extensional case. Finally, we report
on experiments.

2. BACKGROUND
The theory of bit-vectors allows precise modelling of ac-

tual computation in hardware and software. It models mod-
ular arithmetic, e.g. addition is modulo 232, using two’s com-
plement representation. Other operations include compari-
son and logical operations, shifting, concatenation, and bit
extraction.

Arrays are one of the most important data structures in
computer science [17]. The basic operations on arrays are
read , write and equality on array elements. With read(a, i)
we denote the value of array a at index i. With write(a, i, e)
we denote array a, overwritten at index i with element e.
All other array elements remain the same. From the theory
of uninterpreted functions EUF we inherit the array congru-
ence axiom:

(A1) a = b ∧ i = j ⇒ read(a, i) = read(b, j)

Our approach does not need explicit congruence closure.
The remaining non-extensional axioms of the theory of ar-
rays are [5, 4]:

(A2) i = j ⇒ read(write(a, i, e), j) = e

(A3) i 6= j ⇒ read(write(a, i, e), j) = read(a, j)

Variables in these axioms are assumed to be universally
quantified. Axiom (A2) asserts that the value read at an
index is the same as the last value written to this index. Ax-
iom (A3) asserts that writing to an index, does not change
the values at other indices. In principle, axioms (A2) and
(A3) can be used as rewrite rules, which allow to replace
every read following a write by a conditional expression:

read(write(a, i, e), j) is repl. by cond(i = j, e, read(a, j))

The expression cond(c, s, t) returns s if the condition c is
true, and t otherwise. The benefit of this eager approach is
that writes are completely eliminated. The drawback is a
quadratic blowup [15]. In addition to the array operations
discussed so far, SMT solvers support conditionals on arrays,
e.g. cond(c, a, b), where a and b are arrays. In principle,
using a fresh array variable d,

cond(c, a, b) can be repl. by (c→ a = d) ∧ (c→ b = d),

but this requires two more array equalities, which might be
expensive to handle.

Extensionality allows array comparisons [5, 4]:

(A4) a = b ⇐ ∀i (read(a, i) = read(b, i))

The other direction of the implication is already covered by
(A1). The extensionality axiom (A4) is required for reason-
ing about array inequalities:

(A4′) a 6= b ⇒ ∃λ (read(a, λ) 6= read(b, λ))

3. ALGORITHM
We use lemmas on demand [12, 14, 1, 13, 10] for bit-

vectors and one-dimensional1 arrays, similar to [15], but for
the extensional theory of arrays. We also describe the algo-
rithm on a much more precise level.

Bit-vector variables and operations are eagerly encoded
into SAT, including fresh variables for array equalities and
read operations. The array operations, write and condi-
tional, are not encoded, as they return arrays. The resulting
SAT instance can produce spurious satisfying assignments,
invalid in the extensional theory of arrays. Therefore, if the
SAT solver returns a satisfying assignment σ, then we still
have to check all array axioms, before concluding satisfiabil-
ity. If an array axiom is violated, we generate a symbolic
bit-vector lemma that rules out this and similar assignments.
In our implementation this lemma is incrementally added on
the CNF level. No additional expressions are generated.

We show that the lemmas on demand approach [12] can
be generalized to the extensional theory of arrays. Adding
bit-vector lemmas on demand is sufficient. This algorithm
[12] always terminates, as there are only finitely many as-
signments to bit-vector variables in φ. In every iteration
the algorithm can terminate concluding unsatisfiability, or
satisfiability if there is no theory inconsistency. However,
if an inconsistency is detected, this and similar inconsistent
assignments are ruled out, and the algorithm continues with
the next refinement iteration.

1Multi-dimensional arrays can be easily be represented by
one-dimensional arrays.

procedure lemmas-on-demand (φ)

encode-to-sat (φ)

loop

(r, σ) ← sat(φ)

if (r = unsatisfiable) return unsatisfiable

if (consistent (φ, σ)) return satisfiable

add-lemma (φ, σ)

Figure 1: Algorithm.

4. CONSISTENCY CHECKER
Let φ denote the formula for which satisfiability is checked,

and let σ denote a concrete assignment, generated by the
SAT solver. We represent φ as an expression DAG. Expres-
sions are either arrays or bit-vectors.

4.1 Read
If the only array operations are reads, the only array ex-

pressions in φ are array variables. The consistency checker
iterates over all array variables and checks congruence. If
σ(i) = σ(j), but σ(read(a, i)) 6= σ(read(a, j)), e.g. (A1) is
violated, then a read-read conflict occurs, and the symbolic
bit-vector lemma is added:

i = j ⇒ read(a, i) = read(a, j)

All lemmas are encoded directly on the CNF level. No addi-
tional expressions are generated. Due to space constraints,
encoding details have to be skipped.

4.2 Write
If we also consider write expressions in φ, then an array

expression is either an array variable or a write operation.
Note that φ can contain nested writes. If array axiom (A2)
or (A3) is violated, a read-write conflict occurs. In the first
phase, the consistency checker iterates over array expres-
sions and propagates reads:

1. Map all a to its set of reads ρ(a),
initialized as ρ(a) = {read(a, j) in φ}.

2. For all read(b, i) ∈ ρ(write(a, j, e)):
if σ(i) 6= σ(j), add read(b, i) to ρ(a).

3. Repeat step 2 until fix-point is reached,
i.e. ρ does not change anymore.

In the second phase consistency is checked:

4. For all read(b, i), read(c, k) in ρ(a):
check adapted congruence axiom.

5. For all read(b, i) ∈ ρ(write(a, j, e)), σ(i) = σ(j):
check σ(read(b, i)) = σ(e).

In step 4 the original array congruence axiom (A1) can not
be applied, as ρ(a) can contain propagated reads, which do
not read on a directly. An adapted axiom is violated if
σ(i) = σ(k), but σ(read(b, i)) 6= σ(read(c, k)). We collect all
indices ji

1 . . . j
i
m, which have been used as j in the update

rule for ρ (step 2) while propagating read(b, i). Similarly, we
collect all indices jk

1 . . . j
k
n used as j in the update rule for ρ

array
8 32

i
32

k
32

j1
32

j2
32

j3
32

j4
32

e1
8

e2
8

e3
8

e4
8

write

12
3

write
2

3 1

write
1

2 3

write

2 3 1

read
2

1

read

2 1

ne

1 2

Figure 2: φ for the examples 1 and 2.

while propagating read(c, k). We add the following symbolic
bit-vector lemma:

i = k ∧
m̂

l=1

i 6= ji
l ∧

n̂

l=1

k 6= jk
l ⇒ read(b, i) = read(c, k)

The first big conjunction encodes that σ(i) is different from
all the assignments to the write indices on the propagation
path of read(b, i), the second conjunction that σ(k) is dif-
ferent from all the write indices on the propagation path of
read(c, k). Adding this symbolic lemma makes sure that in
the consistency checks of the following refinement iterations,
the two reads can not produce the same conflict: either the
propagation paths change, or the reads are congruent.

Example 1. Consider the reads

r1 := read(write(write(a, j1, e1), j2, e2), i)

and

r2 := read(write(write(a, j3, e3), j4, e4), k),

as shown in Fig. 2. Let φ be r1 = r2. We assume that
the SAT solver has generated the following assignments:
σ(i) = 0, σ(k) = 0, σ(j1) = 1, σ(j2) = 5, σ(j3) = 1,
σ(j4) = 2, σ(r1) = 3 and σ(r2) = 4, i.e. all the write in-
dices are different from the two identical read indices, and
the read values differ. Read r1 is propagated down to a, as
σ(i) 6= σ(j2) and σ(i) 6= σ(j1). Read r2 is propagated down
in the same way. We check ρ(a), find an inconsistency ac-
cording to step 4, as σ(i) = σ(k), but σ(r1) 6= σ(r2), and
add the following lemma:
i = k ∧ i 6= j1 ∧ i 6= j2 ∧ k 6= j3 ∧ k 6= j4 ⇒ r1 = r2

If the check in step 5 fails, i.e. axiom (A2) is violated, then we
generate a similar lemma. In this case one of the propagation
paths is empty.

Example 2. Let φ be as in example 1, and σ(i) = 3,
σ(r1) = 1, σ(j2) = 0, σ(j1) = 3 and σ(e1) = 4. We
propagate r1 down to write(a, j1, e1), as σ(i) 6= σ(j2). We
check ρ(write(a, j1, e1)), find an inconsistency according to
step 5, as σ(i) = σ(j1), but σ(r1) 6= σ(e1), and add the
following lemma:

i = j1 ∧ i 6= j2 ⇒ r1 = e1

Fix-point computation can be implemented as post-fix DFS
traversal on the array expression sub graph of φ interleaved
with on-the-fly consistency checking. Without array condi-
tionals nor equality the sub graph is actually a tree, which
simplifies this traversal further.

4.3 Conditional
As soon as we add conditionals on arrays, our array ex-

pressions become real DAGs. We add the following rule after
step 2:

2a. For all read(b, i) ∈ ρ(cond(c, t, e)):
if σ(c) = 1, add read(b, i) to ρ(t),
else add read(b, i) to ρ(e).

The current assignment of the SAT solver determines which
array is selected. If the condition is set to 1, reads are prop-
agated down to t, otherwise down to e.

The lemma, generated upon inconsistency detection, is
extended in the following way. We additionally collect all
conditions ci1, . . . c

i
o used as c in step 2a while propagating

down read(b, i). Similarly, we collect all conditions ck1 , . . . c
k
p

used as c in step 2a while propagating down read(c, k). Two
more conjunctions are added:

. . .

ô

l=1

cil = σ(cil) ∧
p^

l=1

ckl = σ(ckl) ⇒ read(b, i) = read(c, k)

Note that on the CNF level, ck = σ(ck) can be represented
as one literal.

4.4 Equality
Finally, we also consider extensionality and introduce ar-

ray equalities. For every array equality a = b we generate
a fresh boolean variable ea,b, as in the Tseitin Transforma-
tion [21]. Two virtual reads, read(a, λ) and read(b, λ), over
a fresh index variable λ, are added. Then we add as con-
straint:

ēa,b ⇒ read(a, λ) 6= read(b, λ)

The idea of this constraint is that virtual reads are used as
witness for array inequality. The SAT solver is only allowed
to set ea,b to false if there is an assignment to λ, such that
read(a, λ) 6= read(b, λ). A similar usage of λ can be found
in [4], and as k in rule ext [20]. To propagate reads over
array equalities, we add rule 2b:

2b. For all a = b where σ(ea,b) = 1 and read(c, i) ∈ ρ(a):
add read(c, i) to ρ(b) and vice versa.

According to Rule 2b reads have to be propagated over an
array equality, but only if the SAT solver assigns it to true.

However, the changes made so far are not sufficient. Con-
sider the formula:

write(a, i1, e1) = write(b, i2, e2) ∧ i1 = i2 ⇒ e1 = e2

array

8 32

array

8 32

c

1

j1

32

j2

32

e1

8

e2

8

x

8

i

32

write

1
2

3

cond

2
1 3

write

1 2 3

read

2 1

eq

2 1

eq

2 1

Figure 3: φ for the multi-rooted examples 3 and 4.

So far this formula can not be shown to hold, although it is a
theorem. To solve this problem, we interpret writes as reads
and propagate them in the same way. As a result of this, we
enforce that the write values e1 and e2 have to be equal, as
writes interpreted as reads have to be congruent according to
axiom (A1). Note that write propagation is only necessary
as we do not handle EUF explicitly, i.e. congruence of write.

We use a polymorphic expression access in our implemen-
tation. An access expression can be a read or write. This
simplifies the implementation, as we do not have to distin-
guish between read or write during propagation.

As soon as array equalities are introduced, fix-point com-
putation is needed, as propagations may be cyclic. A simple
example is the transitivity of array equality. Recall that we
introduce two virtual reads for every array equality, which
in this example are propagated in a cyclic way. Hence, post-
order traversal is no longer sufficient.

The lemma, generated upon inconsistency detection, is
extended in the following way. We additionally collect all
array equalities ei

1, . . . e
i
q used as e in step 2b while prop-

agating read(b, i). Similarly, we collect all array equalities
ek
1 , . . . e

k
r used as e in step 2b while propagating read(c, k).

Two more conjunctions are added:

. . . ∧
q^

l=1

ei
l ∧

r̂

l=1

ek
l ⇒ read(b, i) = read(c, k)

Example 3. Now consider w1 := write(a, j1, e1), r :=
read(cond(c, b, w1), i) and w2 := write(a, j2, e2), as shown
in Fig. 3. Let φ be r = x ∧ w1 = w2. We assume
that the SAT solver has generated the following assign-
ments: σ(j1) = 0, σ(j2) = 0, σ(e1) = 0, σ(e2) = 3
and σ(ew1,w2) = 1. We propagate w2 as read over the
array equality w1 = w2 to w1. We find an inconsis-
tency for ρ(w1), according to step 4, as σ(j1) = σ(j2),
but σ(e1) 6= σ(e2), and add the lemma:

j1 = j2 ∧ ew1,w2 ⇒ e1 = e2

Example 4. Now let φ be as in example 3, and σ(i) =
0, σ(r) = 1, σ(c) = 0, σ(j1) = 1, σ(j2) = 0, σ(e2) = 5 and
σ(ew1,w2) = 1. We propagate r down to a, as σ(c) = 0
and σ(i) 6= σ(j1). We propagate w2 as read over ew1,w2 to
w1 and down to a, as σ(ew1,w2) = 1 and σ(j1) 6= σ(j2).
We find an inconsistency for ρ(a), according to step 4,
as σ(i) = σ(j2), but σ(r) 6= σ(e2), and add the following
lemma:
i = j2 ∧ i 6= j1 ∧ j2 6= j1 ∧ c = 0 ∧ ew1,w2 ⇒ r = e2

The rules presented so far, do not propagate upwards, e.g. ax-
iom (A3) is only applied from left to right. Consequently,
there is one class of formulas, where the consistency checker
fails to find inconsistencies. Consider the following example:

i 6= k ∧ j 6= k ∧
write(a, i, e1) = write(b, j, e2) ∧
read(a, k) 6= read(b, k)

This formula is unsatisfiable, which can be derived by ap-
plying axiom (A1) and (A3). The access objects are not
propagated upwards, therefore the reads are never propa-
gated to the same array expression. The inconsistency can
not be detected by the set of rules discussed so far. To solve
this problem, we finally complete our consistency checking
algorithm as follows:

2c. For all read(b, i) ∈ ρ(a):
if σ(i) 6= σ(j), add read(b, i) to ρ(write(a, j, e)).

2d. For all read(b, i) ∈ ρ(t):
if σ(c) = 1, add read(b, i) to ρ(cond(c, t, e)).

2e. For all read(b, i) ∈ ρ(e):
if σ(c) = 0, add read(b, i) to ρ(cond(c, t, e)).

4.5 Complexity, Soundness and Completeness
The complexity of the consistency checking algorithm is

quadratic in the worst case. More specifically the number
of expression nodes |φ| is an upper bound on the number
of read expression nodes and also an upper bound on the
number of array expression nodes. Therefore there are at
most O(|φ|2) updates to ρ in one run of the consistency
checker.

Soundness follows from the fact, that all our rules respect
axioms. Thus, if the consistency checker finds a conflict,
then the current assignment does not satisfy the extensional
theory of arrays. Our rules simply model all ways of apply-
ing axioms (A1) to (A4). Thus, if our consistency checker
determines consistency, the model is also consistent in the
extensional theory of arrays.

After the workshop, we have been working on a detailed
complexity analysis, and proofs of soundness and complete-
ness, which are contained in a full version of this paper [6].

5. EXPERIMENTAL EVALUATION
We implemented our lemmas on demand algorithm for the

extensional theory of arrays in our new SMT solver Boolec-
tor including the previous state of the art decision proce-
dure [20]. Our implementation of [20] eliminitates equalities
on arrays by eager rewriting. Side conditions of rewrite rules
are handled symbolically to avoid case splitting. We used
Boolector version 0.0 for our experiments. Boolector can be
downloaded from http://fmv.jku.at/boolector.

Boolector uses a functional AIG encoding with two level
AIG rewriting [7], as in [8]. Picosat [3] is used as SAT solver.

We ran our benchmarks on our cluster of 3 GHz Pentium
IV with 2 GB main memory, running Ubuntu. We set a time
limit of 900 seconds and a memory limit of 1500 MB.

Our set of benchmarks, see Table 1, contains extensional
examples, where computer memory is modelled as one big
array of 232 bytes. Benchmark swapmem swaps with a com-
bination of XOR operations two byte sequences in memory
twice. Extensionality is used to show that the final mem-
ory is equal to the initial. An instance is satisfiable if the
sequences can overlap, and unsatisfiable otherwise. Bench-
mark dubreva reverses multiple byte sequences in memory
twice. Again, extensionality is used to show that the final
memory is equal to the initial. The instances are all un-
satisfiable. In benchmarks wchains we check the following.
Given P 32 bit pointers, the 32 bit word a pointer points to
is overwritten with its pointer address. Then, the order in
which the pointers are written does not matter as long the
pointers are 4 byte aligned.

6. CONCLUSION
We showed that lemmas on demand can also handle the

extensional theory of arrays. Our key contributions are a
precise formulation of a propagation based approach and its
generalization to extensionality. Our implementation shows
very competitive performance. Future optimizations include
a linear equation solver [15] and a faster rewriting engine.

After the workshop, we have been working on a full ver-
sion [6] of this article which describes complexity, soundness
and completeness in more detail.

Finally, we want to thank Nikolaj Bjørner and Leonardo
De Moura for their helpful comments on an earlier version
of this paper.

7. REFERENCES
[1] C. Barrett, D. L. Dill, and A. Stump. Checking

satisfiability of first-order formulas by incremental
translation to SAT. In Proc. CAV, 2002.

[2] C. Barrett and C. Tinelli. CVC3. In Proc. CAV, 2007.

[3] A. Biere. PicoSAT essentials. JSAT, 4, 2008.

[4] A. Bradley and Z. Manna. The Calculus of
Computation - Decision Procedures with Applications
to Verification. Springer, 2007.

[5] A. Bradley, Z. Manna, and H. Sipma. What’s
decidable about arrays? In Proc. VMCAI, 2006.

[6] R. Brummayer and A. Biere. Lemmas on Demand for
the Extensional Theory of Arrays. submitted.

[7] R. Brummayer and A. Biere. Local two-level
and-inverter graph minimization without blowup. In
Proc. MEMICS, 2006.

[8] R. Brummayer and A. Biere. C32SAT: Checking C
expressions. In Proc. CAV, 2007.

[9] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio,
Z. Hanna, A. Nadel, A. Palti, and R. Sebastiani. A
lazy and layered SMT(BV) solver for hard industrial
verification problems. In Proc. CAV, 2007.

[10] R. Bryant, D. Kroening, J. Ouaknine, S. Seshia,
O. Strichman, and B. Brady. Deciding bit-vector
arithmetic with abstraction. In Proc. TACAS, 2007.

[11] L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In Proc. TACACS, 2008.

[12] L. de Moura and H. Rueß. Lemmas on demand for
satisfiability solvers. In Proc. SAT, 2002.

[13] N. Eén and N. Sörensson. Temporal induction by
incremental SAT solving. In Proc. BMC, 2003.

[14] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe.
Theorem proving using lazy proof explication. In
Proc. CAV, 2003.

[15] V. Ganesh and D. L. Dill. A decision procedure for
bit-vectors and arrays. In Proc. CAV, 2007.

[16] P. Manolios, S. Srinivasan, and D. Vroon. BAT: The
bit-level analysis tool. In Proc. CAV, 2007.

[17] J. McCarthy. Towards a mathematical science of
computation. In Proc. IFIP Congress, 1962.

[18] R. Nieuwenhuis and A. Oliveras. Decision procedures
for SAT, SAT modulo theories and beyond. the
BarcelogicTools. In Proc. LPAR, 2005.

[19] R. Sebastiani. Lazy satisfiability modulo theories.
JSAT, 3, 2007.

[20] A. Stump, C. Barrett, D. L. Dill, and J. R. Levitt. A
decision procedure for an extensional theory of arrays.
In Proc. LICS, 2001.

[21] G. Tseitin. On the Complexity of Derivation in
Propositional Calculus. In Studies in Constructive
Mathematics and Mathematical Logic, Part II, 1968.

Table 1: Benchmarking Extensional Examples
lemmas eager z3 cvc3

benchmark S P R T M T M T M T M
swapmem s 2 16 0.1 0.6 0.0 0.0 0.1 5.0 554.1 18.2
swapmem s 6 53 0.4 1.2 0.6 3.3 547.6 101.6 90.0 71.9
swapmem s 8 37 0.3 1.4 1.5 5.4 out of

time
out of
time 333.8 175.8

swapmem s 10 34 0.5 1.7 1.0 8.3 out of
time

out of
time 740.2 305.3

swapmem s 12 64 1.0 2.2 3.5 11.2 out of
time

out of
time

out of
time

out of
time

swapmem s 14 57 1.6 2.4 1.8 15.7 out of
time

out of
time

out of
time

out of
time

wchains s 6 14 0.0 0.0 0.8 7.0 46.3 11.6 8.5 60.1
wchains s 8 16 0.0 0.0 1.9 14.5 572.2 32.5 23.5 117.6
wchains s 10 18 0.1 1.3 3.1 20.3 out of

time
out of
time 34.2 193.6

wchains s 12 20 0.1 1.4 3.5 29.8 out of
time

out of
time 65.4 294.6

wchains s 15 21 0.1 1.5 4.2 45.8 out of
time

out of
time 126.3 472.6

wchains s 20 28 0.3 2.0 5.7 80.2 out of
time

out of
time 267.8 897.3

wchains s 30 36 0.6 2.8 10.9 179.9 out of
time

out of
time

out of
memory

out of
memory

wchains s 60 70 2.3 4.8 41.8 718.5 out of
time

out of
time

out of
memory

out of
memory

wchains s 90 96 4.8 6.8 out of
memory

out of
memory

out of
time

out of
time

out of
memory

out of
memory

dubreva u 2 19 0.1 0.6 0.0 0.0 0.5 5.0 out of
time

out of
time

dubreva u 3 41 0.3 0.7 0.1 1.2 0.7 5.6 out of
time

out of
time

dubreva u 4 239 12.5 2.2 12.5 6.5 out of
time

out of
time

out of
time

out of
time

dubreva u 5 379 27.4 3.7 348.3 13.1 out of
time

out of
time

out of
time

out of
time

dubreva u 6 1187 322.2 12.4 out of
time

out of
time

out of
time

out of
time

out of
time

out of
time

dubreva u 7 1637 663.1 18.2 out of
time

out of
time

out of
time

out of
time

out of
memory

out of
memory

swapmem u 2 13 0.1 0.7 0.1 0.8 1.2 5.5 6.1 9.0
swapmem u 4 25 1.1 1.0 3.0 2.0 5.2 7.1 159.6 49.8
swapmem u 6 37 3.2 1.2 27.9 4.2 16.1 8.6 out of

time
out of
time

swapmem u 8 49 9.0 1.5 129.0 8.3 20.7 10.1 out of
time

out of
time

swapmem u 10 61 18.3 2.0 411.2 15.4 30.9 11.0 out of
time

out of
time

swapmem u 12 73 34.7 2.4 out of
time

out of
time 62.1 13.3 out of

time
out of
time

swapmem u 14 85 63.4 2.8 out of
time

out of
time 102.7 19.4 out of

time
out of
time

wchains u 2 17 0.0 0.0 0.0 0.0 out of
time

out of
time 4.1 5.8

wchains u 4 33 0.1 0.9 1.7 3.8 10.5 16.4 out of
time

out of
time

wchains u 6 49 0.4 1.1 13.5 8.2 1.9 5.5 out of
memory

out of
memory

wchains u 8 65 0.6 1.3 54.8 15.0 848.0 725.1 out of
memory

out of
memory

wchains u 10 81 1.1 1.5 158.2 23.3 59.7 14.6 out of
memory

out of
memory

wchains u 12 97 2.4 1.8 333.5 34.3 93.7 22.4 out of
memory

out of
memory

wchains u 14 113 2.9 1.9 588.2 46.7 19.3 6.9 out of
memory

out of
memory

wchains u 16 129 4.8 2.1 out of
time

out of
time 35.7 8.1 out of

memory
out of

memory

wchains u 18 145 6.6 2.3 out of
time

out of
time 209.8 26.2 out of

memory
out of

memory

We compare our lemmas on demand approach with (i) the eager approach [20], implemented as
rewrite system, (ii) Z3 1.2 [11], and (iii) CVC3 1.2.1 [2]. The first column gives the benchmark
name, the second the satisfiability S, followed by the benchmark parameter P. In the fourth column,
labelled R, the number of refinements (lemmas on demand) is shown. Columns T and M show
solving time in seconds and memory usage in MB. Our approach clearly outperforms all the others.

