
Journal on Satisfiability, Boolean Modeling and Computation 6 (2009) 165-201

Lemmas on Demand for the Extensional Theory of Arrays

Robert Brummayer robert.brummayer@jku.at

Armin Biere armin.biere@jku.at

Institute for Formal Models and Verification

Johannes Kepler University Linz

Austria

Abstract

The quantifier-free extensional theory of arrays TA plays an important role in hard-
ware and software verification. In this article we present a novel decision procedure that
refines formula abstractions with lemmas on demand. We consider the case where TA is
combined with a decidable quantifier-free first-order theory TB . Unlike traditional lazy
SMT approaches, where lemmas are added on the boolean abstraction layer, our decision
procedure adds lemmas in TB . We discuss our decision procedure in detail. In particular,
we prove soundness and completeness, and discuss complexity. We present our decision
procedure in a generic context and provide implementation details and optimizations, in
particular for bit-vectors. Finally, we report on experiments and discuss related work.

Keywords: SMT, arrays, bit-vectors, decision procedures

Submitted January 2009; revised April 2009; published May 2009

1. Introduction

Arrays are important and widely used non-recursive data-structures, natively supported by
nearly all programming languages. Software systems rely on arrays to read and store data
in many different ways. In formal verification arrays are used to model main memory in
software, and memory components, e.g. caches and FIFOs, in hardware systems. Typically,
a flat memory model is appropriate and a memory is represented as a one-dimensional array
of bit-vectors. The ability to compare arrays supports complex memory verification tasks
like verifying that two algorithms leave memory in the same state. Reasoning about arrays
is an important issue in formal verification and efficient decision procedures are essential.

Recently, Satisfiability Modulo Theories (SMT) solvers gained a lot of interest both in
research and industry as their specific decision procedures, e.g. for the theory of arrays,
turned out to be highly efficient. The SMT framework provides first-order theories to
express verification conditions of interest. An SMT solver decides satisfiability of a formula
expressed in a combination of first-order theories. Typically, specific decision procedures for
these theories are combined by frameworks like [4, 45, 50]. Furthermore, theory combination
does not have to be performed eagerly, but may also be delayed [15, 24]. If the formula is
satisfiable, then most SMT solvers provide a model. In formal verification, a model typically
represents a counter-example which may be directly used for debugging.

SMT approaches can be roughly divided into eager and lazy. In the lazy approach, the
DPLL [28] procedure is interleaved with highly optimized decision procedures for specific

c©2009 Delft University of Technology and the authors.

R. Brummayer and A. Biere

first-order theories. Decision procedures may be layered, i.e. fast (incomplete) subproce-
dures are called before more expensive ones [22].

Boolean formula abstractions are enumerated by the DPLL engine. Theory solvers
compute whether the enumerations produce theory conflicts or not. Boolean lemmas are
used to iteratively refine the abstraction. The DPLL procedure is responsible for boolean
reasoning and is the heart of this approach. Even case splits of the theory solvers may be
delegated to the DPLL engine [8]. For more details about lazy SMT see [46, 49].

In the eager approach, the theory constraints are eagerly compiled into the formula,
i.e. an equisatisfiable boolean formula is built up front. For example, in the theory of unin-
terpreted functions, function symbols are eagerly replaced by fresh variables. Furthermore,
congruence constraints are added to the formula. These constraints, which are also called
Ackermann constraints [3], are used to ensure functional consistency. Finally, the formula
is checked for satisfiability once. In contrast to the lazy approach, no refinement loop is
needed. For more details about SMT and first-order theories see [13, 16, 40, 46, 49].

We present a novel decision procedure for the extensional theory of arrays. In our deci-
sion procedure an over-approximated formula is solved by an underlying decision procedure.
If we find a spurious model, then we add a lemma to refine the abstraction. This is in the
spirit of the counter-example-guided abstraction refinement approach [27].

We consider the case where the quantifier-free extensional theory of arrays TA is com-
bined with a decidable quantifier-free first-order theory TB, e.g. bit-vectors. Our decision
procedure uses an abstraction refinement similar to [7, 30, 34]. However, we do not use
a propositional skeleton as in [49], but a TB skeleton as formula abstraction. Similar to
STP [35, 36], we replace reads by fresh abstraction variables and iteratively refine the for-
mula abstraction. Therefore, our abstraction refinements are in TB.

This article is an improvement and extension of a preliminary version presented at the
SMT’08 workshop [19]. We discuss our decision procedure in a more generic context and
prove soundness and completeness. As implementing a decision procedure presented at
an abstract and theoretical level is nontrivial, we also provide implementation details and
optimizations, in particular in combination with bit-vectors.

This article is organized as follows. In §2 and §3 we provide the necessary theoreti-
cal background. We introduce the extensional and non-extensional theory of arrays, and
discuss preliminaries for our decision procedure. In §4 we treat preprocessing and in §5
formula abstraction. In §6 we present a high-level overview of our decision procedure. In
§7 we informally introduce the main parts of our decision procedure: consistency check-
ing and lemma generation. In §8 we formally define how lemmas are generated and prove
soundness. In §9 we prove completeness and in §10 we discuss complexity. In §11 we discuss
implementation details and optimizations, and report on experimental results in §12. In
§13 we discuss related work, and finally conclude in §14.

2. Theory of Arrays

In principle, the theories of arrays are either extensional or non-extensional. While the
extensional theories allow to reason about array elements and arrays, the non-extensional
theories support reasoning about array elements only. McCarthy introduced the classic
non-extensional theory of arrays with the help of read-over-write semantics in [44].

166

Lemmas on Demand for the Extensional Theory of Arrays

A first-order theory is typically defined by its signature and set of axioms. The theory
of arrays has the signature ΣA : {read ,write,=}. The function read(a, i) returns the value
of array a at index i. Arrays are represented in a functional way. The function write(a, i, e)
returns array a, overwritten at index i with element e. All other elements of a remain the
same. The predicate = is only applied to array elements. The axioms of the theory of
arrays are the following:

(A1) i = j ⇒ read(a, i) = read(a, j)

(A2) i = j ⇒ read(write(a, i, e), j) = e

(A3) i 6= j ⇒ read(write(a, i, e), j) = read(a, j)

Additionally, we assume that the theory of arrays includes the axioms of reflexivity, sym-
metry and transitivity of equality. If we also want to support equality on arrays, then we
need an additional axiom of extensionality:

(A4) a = b ⇔ ∀i (read(a, i) = read(b, i))

Note that (A1) and the implication from left to right of (A4) are instances of the function
congruence axiom schema. Alternatively, (A4) can be expressed in the following way:

(A4′) a 6= b ⇔ ∃λ (read(a, λ) 6= read(b, λ))

One can interpret (A4′) in the way that if and only if a is unequal to b, we have to find a
witness of inequality, i.e. we have to find an index λ at which the arrays differ.

In the rest of this article we write TA to denote the quantifier-free fragment of the
extensional first-order theory of arrays. We write TA |= φ to denote that a ΣA formula φ
is valid in TA (TA-valid). A ΣA-formula is TA-valid if every interpretation that satisfies the
axioms of TA also satisfies φ.

3. Preliminaries

We assume that we have a decidable quantifier-free first-order theory TB supporting equality.
TB is defined by its set of axioms and by its signature ΣB. We assume that ΣA∩ΣB = {=},
i.e. the signatures are disjoint, only equality is shared. Terms are of sort Base. Furthermore,
we assume that we have a sound and complete decision procedure DPB such that:

1. DPB takes a ΣB-formula and computes satisfiability modulo TB.

2. If a ΣB-formula is satisfiable, DPB returns a B-model σ mapping terms and formulas
to concrete values.

In the literature, models are satisfying assignments to variables only. However, we assume
that DPB also provides consistent assignments to arbitrary terms and formulas in the input
formula. Implementing this feature is typically straightforward as we can replace variables
with their concrete assignments and recursively evaluate terms and formulas to obtain
each assignment. If we use a SAT solver inside DPB in combination with some variant of
Tseitin encoding [52], then we can directly evaluate the assignments to the auxiliary Tseitin
variables of each term resp. formula.

167

R. Brummayer and A. Biere

Our decision procedure DPA decides satisfiability modulo TA ∪ TB. The signature of
TA is augmented with the signature of TB and the combined theory TA ∪ TB includes the
axioms of TA and TB. Array variables and writes are terms of sort Array . They have sets
of indices and values of sort Base1. Our decision procedure takes a (ΣA ∪ΣB)-formula φ as
input and decides satisfiability. If it is satisfiable, then our decision procedure provides an
A-model. In contrast to B-models, A-models additionally provide concrete assignments to
terms of sort Array .

4. Preprocessing

We apply the following two preprocessing steps to the input formula φ. We assume that φ
is represented as Directed Acyclic Graph (DAG) with structural hashing enabled, i.e. syn-
tactically identical subformulas and subterms are shared. Furthermore, we assume that
inequality is represented as combination of equality and negation, i.e. a 6= b is represented
as ¬(a = b).

1. For each equality a = c ∈ φ between terms of sort Array , we introduce a fresh
variable λ of sort Base and two virtual reads read(a, λ) and read(c, λ). Then, we add
the following top-level constraint:

a 6= c → ∃λ. read(a, λ) 6= read(c, λ)

2. For each write(a, i, e) ∈ φ, we add the following top-level constraint:

read(write(a, i, e), i) = e

These steps add additional top-level constraints c1 . . . cn to φ to the resulting formula π. To
be more precise, π is defined as follows:

π := φ ∧
n
∧

i=1

ci

The idea of preprocessing step 1 is that virtual reads are used as witness for array
inequality. If a 6= b, then it must be possible to find an index λ at which the arrays contain
different values. A similar usage of λ can be found in [16], and as k in rule ext [51].

The idea of preprocessing step 2 is that additional reads are introduced to enforce
consistency on write values. This preprocessing step simplifies our presentation and proofs
as we can focus on reads and do not have to explicitly treat write values. In contrast to
preprocessing step 1, we do not expect that step 2 is performed in real implementations. In
section 11.4 we discuss how this preprocessing step can be avoided.

Proposition 4.1. φ and π are equisatisfiable.

Proof. We show that each constraint c added by a preprocessing step is TA-valid: TA |= c.
Therefore, conjoining these constraints to φ does not affect satisfiability.

Let c be an instance of preprocessing step 1. Axiom (A4′) asserts c. Thus, TA |= c. Let
c be an instance of preprocessing step 2. Axiom (A2) asserts c. Thus, TA |= c.

1. In principle, the sort of indices may differ from the sort of values. However, like most decision procedure
descriptions, e.g. [51], we assume that the sorts are the same to simplify presentation and proofs. It is
straightforward to generalize our decision procedure to support multiple sorts.

168

Lemmas on Demand for the Extensional Theory of Arrays

4.1 If-Then-Else on Arrays

Typically, modern SMT solvers support an if-then-else on terms of sort Array : cond(c, a, b),
where c is a boolean condition. We do not explicitly treat this feature here to simplify our
presentation. In principle, cond(c, a, b) can always be replaced by a fresh variable d of sort
Array , and the following constraint:

c → d = a ∧ ¬c → d = b

This preprocessing step must be performed before preprocessing step 1 and 2. In principle,
our approach supports a direct integration of if-then-else on terms of sort Array without
rewriting it up front [19].

5. Formula Abstraction

In the following, we consider a partial formula abstraction function α. Our formula ab-
straction is similar to the abstraction in the lazy SMT approach [49], but we do not gen-
erate a pure propositional skeleton, but a TB skeleton as formula abstraction. Similar to
STP [35, 36], we replace reads by fresh variables. To be precise, our approach introduces
abstraction variables of sort Base, and propositional abstraction variables to handle exten-
sionality. The formula abstraction is applied after preprocessing.

Let π be the result of preprocessing a (ΣA ∪ ΣB)-formula φ. Analogously to φ, we
assume that π is represented as DAG with structural hashing enabled. We also assume that
inequality is represented as combination of equality and negation, i.e. a 6= b is represented
as ¬(a = b). The abstraction function α recurses down the structure of π and builds the
over-approximation α(π).

For terms of sort Array the result of applying α is undefined. The abstraction α maps:

1. Each read read(a, i) to a fresh abstraction variable of sort Base.

2. Each equality a = b between terms of sort Array to a fresh propositional abstraction
variable.

3. Each term f(t1, . . . , tm) of sort Base and each formula to f(α(t1), . . . , α(tm)).

4. Each (non-array) variable and symbolic constant to itself.

Now, assume that we start from the boolean part of π, then terms of sort Array can only
be reached by passing reads, and equalities between terms of sort Array . The abstraction
function α replaces exactly these terms by fresh variables, hence the underlying terms of
sort Array are no longer reachable in α(π).

Proposition 5.1. α(π) is an over-approximating abstraction of π.

Proof. First, we show that whenever we have a model σ for π, then we can construct a
model σα for α(π). We assume that σ not only returns satisfying assignments to variables,
but also consistent assignments to terms and formulas in π. Given σ, σα can be constructed
as follows: For each read r in π define σα(α(r)) := σ(r). For each equality e between terms
of sort Array in π define σα(α(e)) := σ(e). For all other terms and formulas x in α(π),

169

R. Brummayer and A. Biere

define σα(x) := σ(x). Obviously, σα satisfies α(π) as the abstraction variables are fresh and
unconstrained.

Second, we show that that whenever we have a model σα for α(π), we can not always
construct a model σ for π. Consider the following example. Assume that our theory TB is
the quantifier-free theory of Presburger arithmetic, i.e. Base represents the natural numbers.
Furthermore, assume that i, λ and e are terms of sort Base, and a is an array with indices
and values of sort Base. Let w be write(a, i, e). Consider the following formula π1:

w = a ∧ read(a, i) 6= e ∧ (w 6= a → read(w, λ) 6= read(a, λ)) ∧ read(w, i) = e

Let q be α(w = a), s be α(read(a, i)), t be α(read(w, λ)), u be α(read(a, λ)), and v be
α(read(w, i)). The abstraction α(π1) results in the following formula:

q ∧ s 6= e ∧ (¬q → t 6= u) ∧ v = e

Obviously, we can find a model σα. However, π1 is unsatisfiable as w = a, read(a, i) 6= e,
and read(w, i) = e can not all be assigned to ⊤.

As α(π) is an over-approximating abstraction of π, α(π) may have additional models
that are spurious in π. Therefore, we have to find a way to eliminate spurious models, which
we will discuss in the next sections.

6. Decision Procedure

Our decision procedure DPA uses an abstraction refinement loop similar to [7, 30, 34].
However, we use a TB skeleton as formula abstraction. Our formula abstraction introduces
abstraction variables of sort Base. Boolean abstraction variables are only introduced to
handle extensionality.

In our decision procedure the over-approximated formula is solved by the underlying
decision procedure DPB. If we find a spurious model, then we add a lemma to refine the
abstraction. In each iteration the algorithm may terminate concluding unsatisfiability, or
satisfiability if the model is not spurious. However, if the model is spurious, inconsistent
assignments are ruled out, and the procedure continues with the next iteration. An overview
of DPA is shown in Fig. 1.

procedure DPA (φ)

π ← preprocess (φ)

ξ ← ⊤

loop

(r, σ)← DPB (α(π) ∧ ξ)

if (r = unsatisfiable) return unsatisfiable

if (consistent (π, σ)) return satisfiable

ξ ← ξ ∧ α(lemma(π, σ))

First, we preprocess φ and initialize our formula refinement ξ to⊤. In each loop iteration,
we take the abstraction α(π), conjoin it with our formula refinement, and run our decision

170

Lemmas on Demand for the Extensional Theory of Arrays

AbstractPreprocess Refine

SAT?

NO

Spurious?

NO

YES

YES

α(π)πφ ξ

φ is unsatisfiable φ is satisfiable

DPB

α(π) ∧ ξ

Figure 1. Overview of DPA.

procedure DPB. If DPB concludes that α(π) is unsatisfiable, then we can conclude that π
is unsatisfiable as α is an over-approximating abstraction. As φ and π are equisatisfiable,
we can finally conclude that the original formula φ is unsatisfiable.

However, if DPB concludes that α(π)∧ξ is satisfiable, it returns a satisfying assignment
σ, i.e. a B-model, which can be used to build an A-model of π. As we have used an
over-approximating abstraction, we have to check if this is a spurious model. We run
our consistency checker on the preprocessed formula π. The consistency checker checks
whether the B-model can be extended to a valid A-model or not. If the consistency checker
does not find a conflict, then we can conclude that π is satisfiable. Again, as π and φ

are equisatisfiable, we can finally conclude that φ is satisfiable. However, if the current
assignment σ is invalid with respect to the extensional theory of arrays, then we generate a
lemma as formula refinement and continue with the next iteration.

7. Consistency Checking and Lemma Generation

In the following, we discuss the consistency checking algorithm, denoted by consistent in
DPA, and lemma generation, denoted by lemma in DPA. A more precise description of
how the lemmas are generated is part of the soundness proof in section 8.

The consistency checker takes π and a concrete B-model σ for α(π) and checks whether
it can be extended to a valid A-model or not. In principle, the algorithm is based on read
propagation and congruence checking of reads. In the first phase, the consistency checker
propagates reads to other terms of sort Array . After the propagation has finished, the
consistency checker iterates over all terms of sort Array in π and checks whether the reads
are congruent or not. If they are not, a lemma is generated to refine the abstraction.

171

R. Brummayer and A. Biere

1 21 2

eq

1
2

eq

1
2

not

and

12

a ij

r1r2

eq
1

2

eq

1 2

not

and

1 2

i j

α(r1) α(r2)

Figure 2. Example 1. Formula φ (resp. π) with array a and two reads r1 and r2 is shown left. The

label and means conjunction, not means negation, and eq means equality. Edge numbers denote

the ordering of the operands, e.g. r1 is a read function where the first operand is a, and the second

operand is i. The abstraction α(π) is shown right.

7.1 Reads

First, we consider the case where reads may only be applied to array variables. Moreover,
we assume that we have no writes and also no equalities between arrays. In this case no
read propagation is necessary. The consistency checker iterates over all array variables and
checks if congruence on reads is violated. Axiom (A1) is violated if and only if:

σ(α(i)) = σ(α(j)) ∧ σ(α(read(a, i))) 6= σ(α(read(a, j)))

In this case we generate the following lemma:

i = j ⇒ read(a, i) = read(a, j)

In principle, this is just a lazy variant of Ackermann expansion [3]. In particular, Ackermann
expansion is an interesting topic for SMT as it plays an important role in deciding formulas
in the theory of equality and uninterpreted functions. For example, see [23].

172

Lemmas on Demand for the Extensional Theory of Arrays

Example 1.

Let φ be as shown in Fig. 2. The preprocessed formula π is identical to φ as no
preprocessing steps are necessary.

We consider the set of reads {r1, r2}. We run DPB on α(π) and DPB generates
a model σ such that σ(i) = σ(j) and σ(α(r1)) 6= σ(α(r2)). We find an inconsistency as
σ(i) = σ(j), but σ(α(r1)) 6= σ(α(r2)), and generate the following lemma:

i = j ⇒ r1 = r2

Note that in this example α(i) = i and α(j) = j, but this is not the general case. Read
values may also be used as read indices. Furthermore, note that our generated lemmas are
in TA. However, in order to refine our abstraction α(π), we apply the abstraction function
α to each generated lemma which is not shown in our examples.

7.2 Writes

If we additionally consider writes in φ resp. π, then a term of sort Array is either an array
variable or a write. Note that it is possible to nest writes. We introduce a mapping ρ which
maps terms of sort Array to a set of reads. Note that these reads are drawn from those
appearing in π. In the first phase, the consistency checker initializes ρ for each term of sort
Array . Then, it iterates over all writes and propagates reads if necessary:

I. Map each b to its set of reads ρ(b), initialized as ρ(b) = {read(b, i) in π for some i}.

D. For each read(b, i) ∈ ρ(write(a, j, e)): if σ(α(i)) 6= σ(α(j)), add read(b, i) to ρ(a).

Repeat rule D until fix-point is reached, i.e. ρ does not change anymore. Fix-point com-
putation of ρ can be implemented as post-order traversal on the array expression subgraph
starting at ”top-level“ writes, i.e. writes that are not overwritten by other writes. Note that
read propagation in rule D is the sense of copying without removing, i.e if we propagate a
read r from source s to destination d it actually means that we copy r from ρ(s) to ρ(d).

In the second phase we check congruence:

C. For each pair read(b, i), read(c, k) in ρ(a): check adapted congruence axiom.

In rule C the original array congruence axiom (A1) can not be applied as ρ(a) may contain
propagated reads that do not read on a directly. Therefore, we have to adapt (A1). The
adapted axiom is violated if and only if:

σ(α(i)) = σ(α(k)) ∧ σ(α(read(b, i))) 6= σ(α(read(c, k)))

173

R. Brummayer and A. Biere

12 3

23
1 1 2 3

2
1 2 1

eq

1 2

not

a

i k

j1

j2 j3

e1

e2 e3w1

w2 w3

r1 r2

Figure 3. Formula φ for examples 2 and 3. It has one array variable a, two reads r1 and r2, and

three writes w1 to w3.

We collect all indices ji
1 . . . j

i
m that have been used as j in D while propagating read(b, i).

Analogously, we collect all indices jk
1 . . . j

k
n that have been used as j in D while propagating

read(c, k). Then, we generate the following lemma:

i = k ∧
m
∧

l=1

i 6= ji
l ∧

n
∧

l=1

k 6= jk
l ⇒ read(b, i) = read(c, k)

The first big conjunction represents that σ(α(i)) is different from all the assignments to the
write indices on the propagation path of read(b, i). Analogously, the second conjunction
represents that σ(α(k)) is different from all the assignments to the write indices on the
propagation path of read(c, k). The resulting lemma ensures that the current inconsistency
can not occur anymore in future refinement iterations. Either the propagation paths change
or the reads are congruent.

In this section we keep the description of our lemmas rather informal. A more precise
description is part of the soundness proof in section 8.

174

Lemmas on Demand for the Extensional Theory of Arrays

1
2

3

2 31 1
2 32 1

2 1 212
1

2 1

eq

2 1

eq

21

eq

21

eq

1 2

notand
1

2

and

12

and

1 2

a

i k

j1

j2 j3

e1

e2 e3w1

w2 w3r3

r4 r5r1 r2

Figure 4. Formula π for examples 2 and 3. Reads r3 to r5 have been added by preproc. step 2.

175

R. Brummayer and A. Biere

eq
1

2

eq

1 2

eq

1 2

not eq

1 2

and
1

2

and

1 2

and
1

2

α(r1) α(r2)

α(r5)α(r4)α(r3) e3e2e1

Figure 5. Formula α(π) for examples 2 and 3. The read indices i and k, and the write indices j1
to j3 are not shown as they are not reachable from the root of α(π). Initially, they are unconstrained

and DPB can assign them arbitrarily.

Example 2.

Let φ be as shown in Fig. 3. The preprocessed formula π is shown in Fig. 4, and α(π)
is shown in Fig. 5.

We run DPB on α(π) and assume that it generates a model σ such that σ(i) = σ(k),
σ(i) 6= σ(j2), σ(i) 6= σ(j1), σ(k) 6= σ(j3), i.e. the assignments to the write in-
dices are different from the assignments to the read indices i and k. Furthermore,
σ(α(r1)) 6= σ(α(r2)). Note that if DPB finds a model, then σ(α(r3)) = σ(e1),
σ(α(r4)) = σ(e2), σ(α(r5)) = σ(e3), and σ(α(r1)) 6= σ(α(r2)) has to hold.

Initially, ρ(a) = ∅, ρ(w1) = {r3}, ρ(w2) = {r1, r4}, and ρ(w3) = {r2, r5}, Read
r1 is propagated down to a as σ(i) 6= σ(j2) and σ(i) 6= σ(j1). Analogously, read r2 is
propagated down to a as σ(k) 6= σ(j3). Therefore, ρ(a) = {r1, r2}, ρ(w1) = {r1, r3},
ρ(w2} = {r1, r4}, and ρ(w3) = {r2, r5}, We check ρ(a), find an inconsistency according
to rule C as σ(i) = σ(k), but σ(α(r1)) 6= σ(α(r2)), and generate the following lemma:

i = k ∧ i 6= j2 ∧ i 6= j1 ∧ k 6= j3 ⇒ r1 = r2

176

Lemmas on Demand for the Extensional Theory of Arrays

Example 3.

Again, let φ be as shown in Fig. 3. The preprocessed formula π is shown in Fig. 4, and
α(π) is shown in Fig. 5.

We run DPB on α(π) and assume that DPB generates a model σ such that σ(i) 6= σ(j2),
σ(i) = σ(j1), σ(α(r1)) 6= σ(e1), σ(k) = σ(j3), and σ(α(r2)) = σ(α(r5)). Again, note
that σ(α(r3)) = σ(e1), σ(α(r4)) = σ(e2), σ(α(r5)) = σ(e3), and σ(α(r1)) 6= σ(α(r2)).

Initially, ρ(a) = ∅, ρ(w1) = {r3}, ρ(w2) = {r1, r4}, and ρ(w3) = {r2, r5}, We
propagate r1 down to w1 as σ(i) 6= σ(j2). Therefore, we update ρ(w1) to {r1, r3}.
We check ρ(w1), find an inconsistency according to rule C as σ(i) = σ(j1), but
σ(α(r1)) 6= σ(α(r3)), and generate the following lemma:

i = j1 ∧ i 6= j2 ⇒ r1 = r3

7.3 Equalities between Arrays

We also consider equalities between terms of sort Array . In particular, we add rules R and
L to propagate reads over equalities between terms of sort Array . Furthermore, we add
rule U to propagate reads upwards if they are not overwritten.

U . For each read(b, i) ∈ ρ(a): if σ(i) 6= σ(j), add read(b, i) to ρ(write(a, j, e)).

R. For each a = c, σ(α(a = c)) = ⊤: for each read(b, i) ∈ ρ(a): add read(b, i) to ρ(c).

L. For each a = c, σ(α(a = c)) = ⊤: for each read(b, i) ∈ ρ(c): add read(b, i) to ρ(a).

Rules R and L represent that we also have to propagate reads over equalities between terms
of sort Array to ensure extensional consistency, but only if DPB assigns them to ⊤. Rule
U is responsible to propagate reads upwards, but only if the assignment to the write index
is different from the assignment to the read index. Note, write(a, j, e) must appear in π.

In order to implement our consistency checking algorithm, we need a real fix-point
computation for ρ. This can be implemented by a working queue that manages future
read propagations. Simple post-order traversal on the array expression subgraph of π is
no longer sufficient as reads are not only propagated downwards, but also upwards, and
between equalities on terms of sort Array .

As soon as we consider extensionality, propagating reads upwards is necessary. Consider
the following example, which is also shown in Fig. 10:

write(a, i, e1) = write(b, j, e2) ∧ i 6= k ∧ j 6= k ∧ read(a, k) 6= read(b, k)

The write indices i and j are respectively different from the read index k. Therefore, position
k at array a is not overwritten with e1. Analogously, position k at array b is not overwritten
with e2. However, in combination with i 6= k and j 6= k, the equality between the two writes

177

R. Brummayer and A. Biere

12 12
eq

1 2

eq

1 2

and

2 1

eq
1

2

or

1 2

a bi j

r1 r2

Figure 6. Extensional formula φ for example 4.

enforces that the two reads have to be extensionally congruent. Therefore, this formula is
unsatisfiable.

In order to detect extensionally inconsistent reads, it is necessary to propagate them
to the same term of sort Array . Rule U enforces extensional consistency in combination
with rules L and R. Reads at array positions that are not overwritten are propagated
upwards to writes, and between equalities on terms of sort Array . In this way, extensionally
inconsistent reads are propagated to the same term of sort Array , and rule C can detect the
inconsistency. This is demonstrated in example 5. Note that upward propagation respects
(A3). We propagate reads upwards only if the assignments to the read indices differ from
the assignment to the write indices, i.e. the values are not overwritten.

Lemmas generated upon inconsistency detection are extended as follows. Lemmas in-
volving rule U are extended analogously to rule D. Lemmas involving rules L and R are
extended in the following way. We additionally collect all array equalities xi

1, . . . x
i
q used

in rule R or L while propagating read(b, i). Analogously, we additionally collect all array
equalities xk

1, . . . x
k
r used in rule R or L while propagating read(c, k). The lemma is extended

in the following way:

. . . ∧

q
∧

l=1

xi
l ∧

r
∧

l=1

xk
l ⇒ read(b, i) = read(c, k)

The complete set of our rules implementing our consistency checking algorithm based on
read propagation is summarized in Fig. 9.

178

Lemmas on Demand for the Extensional Theory of Arrays

1212

eq

12

eq

12

and

2 1

eq

12

or

1
2

1
2

1
2

eq

12

implies

2 1

and

1 2

abij

r1r2

λ

r3r4

Figure 7. Formula π for example 4. The right part of the formula has been added by preprocess-

ing step 1. Here we use r3 = r4 → a = b, which is obviously equal to a 6= b → r3 6= r4. Note

that r3 and r4 are virtual reads that do not occur in the original formula φ.

eq
1

2

eq

1 2

and

1 2

or

21

eq

1 2

implies

2 1

and

1 2

α(r3) α(r4)

α(r1) α(r2)i j

α(a = b)

Figure 8. Formula α(π) for example 4.

179

R. Brummayer and A. Biere

I. Map each b to its set of reads ρ(b), initialized as ρ(b) = {read(b, i) in π}.

D. For each read(b, i) ∈ ρ(write(a, j, e)): if σ(α(i)) 6= σ(α(j)), add read(b, i) to ρ(a).

U . For each read(b, i) ∈ ρ(a): if σ(α(i)) 6= σ(α(j)), add read(b, i) to ρ(write(a, j, e)).

R. For each a = c, σ(α(a = c)) = ⊤: for each read(b, i) ∈ ρ(a): add read(b, i) to ρ(c).

L. For each a = c, σ(α(a = c)) = ⊤: for each read(b, i) ∈ ρ(c): add read(b, i) to ρ(a).

C. For each pair read(b, i), read(c, k) in ρ(a): check adapted congruence axiom.

Figure 9. Final consistency checking algorithm. Rule I initializes ρ. For each term b of sort

Array , i.e. array variables and writes, ρ(b) is initialized as set of reads that directly read on b. Rules

D resp. U perform downward resp. upward propagation. Rules L resp. R perform left resp. right

propagation over equalities between terms of sort Array . Rules D, U , R and L are repeated until

fix-point is reached, i.e. ρ does not change anymore. However, in principle, consistency checking

rule C may also be interleaved with D, U , R and L. This means that consistency checking is

performed on-the-fly.

Example 4.

Let φ be as in Fig. 6. The preprocessed formula π is shown in Fig. 7, and α(π) is shown
in Fig. 8.

We run DPB on α(π) and assume that DPB generates a model σ such that σ(i) = σ(j),
σ(α(a = b)) = ⊤, and σ(α(r1)) 6= σ(α(r2)).

Initially, ρ(a) = {r1, r3} and ρ(b) = {r2, r4}. We propagate r1 and r3 from a to b as
σ(α(a = b)) = ⊤ and therefore extensional consistency has to be enforced. Analogously,
we propagate r2 and r4 from b to a. Therefore, ρ(a) = ρ(b) = {r1, r2, r3, r4}. We check
ρ(a), find an inconsistency according to rule C as σ(i) = σ(j), but σ(α(r1)) 6= σ(α(r2)).
We generate the following lemma:

i = j ∧ a = b ⇒ r1 = r2

180

Lemmas on Demand for the Extensional Theory of Arrays

Example 5.

Let φ be as shown in Fig. 10. The preprocessed formula π is shown in Fig. 11, and α(π)
is shown in Fig. 12.

We run DPB on α(π) and assume that DPB generates a model σ such that
σ(k) 6= σ(i), σ(k) 6= σ(j), σ(α(r1)) 6= σ(α(r2)), and σ(α(w1 = w2)) = ⊤. Fur-
thermore, σ(α(r5)) = σ(e1), and σ(α(r6)) = σ(e2).

We perform on-the-fly consistency checking in depth-first search manner. Ini-
tially, ρ(a) = {r1}, ρ(b) = {r2}, ρ(w1) = {r3, r5}, and ρ(w2) = {r4, r6}. We propagate
r1 up to w1 as σ(k) 6= σ(i), i.e. the value has not been overwritten by w1. We update
ρ(w1) to {r1, r3, r5}. With respect to σ, we assume that the reads in ρ(w1) do not
violate congruence, i.e on-the-fly consistency checking rule C does not find a conflict
in ρ(w1). To enforce extensional consistency, we propagate r1 from w1 to w2 as
σ(α(w1 = w2)) = ⊤. We update ρ(w2) to {r1, r4, r6}. Again, we assume that the
reads in ρ(w2) do not violate congruence. Then, we propagate r1 from w2 down to b as
σ(k) 6= σ(j). We update ρ(b) to {r1, r2}. We check ρ(b), find an inconsistency according
to rule C as r1 and r2 read on the same index, but read a different value. We generate
the following lemma:

k 6= i ∧ k 6= j ∧ w1 = w2 ⇒ r1 = r2

Example 6.

Again, let φ be as shown in Fig. 10. The preprocessed formula π is shown in Fig. 11,
and α(π) is shown in Fig. 12.

We run DPB on α(π) and assume that DPB generates a model σ such that σ(i) = σ(j),
σ(e1) 6= σ(e2), and σ(α(w1 = w2)) = ⊤. Furthermore, σ(r5) = σ(e1), σ(r6) = σ(e2),
and σ(α(r1)) 6= σ(α(r2)).

Again, we perform on-the-fly consistency checking in depth-first search manner.
Initially, ρ(a) = {r1}, ρ(b) = {r2}, ρ(w1) = {r3, r5}, and ρ(w2) = {r4, r6}. We
propagate r5 from w1 to w2 as σ(α(w1 = w2)) = ⊤. We update ρ(w2) to {r4, r5, r6}.
We check ρ(w2) and find an inconsistency according to rule C as σ(i) = σ(j), but
σ(r5) 6= σ(r6). We generate the following lemma:

i = j ∧ w1 = w2 ⇒ r5 = r6

181

R. Brummayer and A. Biere

1
2

3 1 2 31 2 12

eq

1 2

not

eq

1 2

and

12

a bi e1 j e2k

w1 w2r1 r2

Figure 10. Extensional formula φ for examples 5 and 6.

8. Soundness

We show that our approach is sound, i.e. whenever DPA concludes that φ is unsatisfiable,
then φ is unsatisfiable modulo TA∪TB. In particular, we show that each lemma l generated
upon inconsistency detection is TA-valid: TA |= l.

First of all, we introduce a partial mapping χ(a, r), which maps a term of sort Array and
a read r = read(b, i) of sort Base to a propagation condition χ. If the adapted congruence
axiom is violated (rule C), then the lemma is obtained by combining propagation conditions
of the inconsistent reads. Thus, this section also provides a more formal definition of how
lemmas are constructed.

Initially, in rule I, χ(a, read(a, i)) := ⊤ for each read in ρ(a). Otherwise, it is undefined.
Whenever we propagate a read r from source s to destination d under the condition ∆,
then we set the propagation condition χ(d, r) to χ(s, r) ∧ ∆. A propagation occurs only
if ρ(d, r) is undefined, i.e. the read has not been propagated to d before. For each rule in
Fig. 9, table 1 shows how χ is updated while propagating reads.

Lemma 8.1. TA |= χ(d, read(b, i))⇒ read(b, i) = read(d, i)

Proof. The proof is by induction over the updates to χ resp. ρ.

I: trivially holds: TA |= ⊤ ⇒ read(b, i) = read(b, i).

D: Let ψ be χ(write(a, j, e), read(b, i)) and ∆ be i 6= j. From the induction invari-
ant we know TA |= ψ ⇒ read(write(a, j, e), i) = read(b, i). From (A2) we obtain
∆ ⇒ read(write(a, j, e), i) = read(a, i). Therefore, we can conclude TA |= ψ ∧ ∆ ⇒
read(a, i) = read(write(a, j, e), i) = read(b, i).

182

Lemmas on Demand for the Extensional Theory of Arrays

12
3 1

2 31
2 1

2

eq
1

2

noteq

1 2

1 2
12

eq

1 2

implies

21

and

12

and

1 2

and

12

2 1

eq

2 1

21

eq

21

and

12

and

1 2

and

1 2

a bie1 j e2k

w1 w2r1 r2λ

r3 r4r5 r6

Figure 11. Formula π for examples 5 and 6. The two virtual reads r3 and r4 have been introduced

by preprocessing step 1. Reads r5 and r6 have been introduced by preprocessing step 2 to enforce

consistency on write values.

183

R. Brummayer and A. Biere

eq

1 2

not eq

12

implies

2 1

and

1 2

and

12

and

1 2

eq
2

1

eq

2 1

and

12

and

1 2

and

1 2

e1 e2

α(r1) α(r2)

α(w1 = w2)

α(r3)α(r4)

α(r5) α(r6)

Figure 12. Formula α(π) for examples 5 and 6.

Table 1. Updates for χ while propagating read(b, i) from source s to destination d under prop-

agation condition ∆. Rule I is a special case used for initialization.

Rule s d ∆

I b b ⊤
D write(a, j, e) a i 6= j

U a write(a, j, e) i 6= j

R a c a = c

L c a a = c

184

Lemmas on Demand for the Extensional Theory of Arrays

U : Let ψ be χ(a, read(b, i)) and ∆ be i 6= j. From the induction invariant we know TA |=
ψ ⇒ read(a, i) = read(b, i). From (A2) we obtain ∆⇒ read(a, i) = read(write(a, j, e), i).
Therefore, we can conclude TA |= ψ ∧ ∆ ⇒ read(a, i) = read(write(a, j, e), i) =
read(b, i).

R: Let ψ be χ(a, read(b, i)) and ∆ be a = c. From the induction invariant we know TA |=
ψ ⇒ read(a, i) = read(b, i). From (A4) we obtain that ∆ ⇒ read(a, i) = read(c, i).
Therefore, we can conclude TA |= ψ ∧∆⇒ read(a, i) = read(b, i) = read(c, i).

L: can be shown analogously to R.

Proposition 8.1. TA |= i = k ∧ χ(a, read(b, i)) ∧ χ(a, read(c, k))⇒ read(b, i) = read(c, k)

Proof. Let ψb be χ(a, read(b, i)) and ψc be χ(a, read(c, k)). From lemma 8.1 we obtain
TA |= ψb ⇒ read(b, i) = read(a, i) resp. TA |= ψc ⇒ read(c, k) = read(a, k). From (A1) we
obtain that i = k ⇒ read(a, i) = read(a, k). Therefore, TA |= i = k∧ψ1 ∧ψ2 ⇒ read(b, i) =
read(a, i) = read(a, k) = read(c, k) follows.

Thus, each lemma l is TA-valid: TA |= l. Therefore, refining the formula abstraction
with these lemmas does not affect satisfiability. Now, can prove that our approach is sound:

Proposition 8.2. If DPA(φ) = unsatisfiable, then φ is unsatisfiable modulo TA ∪ TB.

Proof. From proposition 4.1 we obtain that φ is equisatisfiable to π, and from proposition 5.1
we know that α(π) is an over-approximation of π. From proposition 8.1 we obtain that each
lemma added as formula refinement does not affect satisfiability as it is TA-valid. Thus, if
DPB concludes that α(π) is unsatisfiable, then it is sound that our overall decision procedure
DPA concludes that φ is unsatisfiable.

9. Completeness

In order to show completeness, we define models for terms of sort Array and show that they
respect semantics of TA. In particular, we show that whenever DPB finds a B-model and
the consistency checker can not find an inconsistency, the B-model in combination with ρ

can be canonically extended to an A-model. For the rest of this section we assume that
DPB found a B-model and consistency checking terminated without violations of rule C.

First of all, we generalize σ for terms of sort Base. Let t be a term of sort Base:

σ(t) = σ(α(t))

This means whenever we want the satisfying assignment to a term of sort Base, we obtain
the assignment to its abstraction. Recall that for terms of sort Base, only reads are mapped
to abstraction variables.

Now, we define models for terms of sort Array , which we also call σ in the following.
First of all, we need exactly one arbitrary but fixed constant value of sort Base. In the

185

R. Brummayer and A. Biere

following, we denote this value by 0. Let a be an arbitrary term of sort Array , and let ν be
an arbitrary constant value of sort Base:

σ(a)(ν) =

{

σ(read(b, i)) if exists read(b, i) ∈ ρ(a) with σ(i) = ν

0 otherwise

This means that if we want to read the concrete value of a term a of sort Array at index ν,
then we have to examine ρ(a). If there is a read read(b, i) where σ(i) = ν, then σ(a)(ν) is
σ(read(b, i)). Otherwise, the result is our constant value 0. The constant value 0 is used as
default value for array elements which defines our model for all terms, even for those not
appearing in π.

First of all, we show that our definition of array models is well-defined. Let a be a term
of sort Array , and let ν be a constant of sort Base:

Proposition 9.1. Array model σ is well-defined.

Proof. The proof is by cases. First, assume that there exists read(b, i) ∈ ρ(a) such that
σ(i) = ν. Let read(c, j) be another read ∈ ρ(a) such that σ(i) = σ(j) = ν, then
σ(read(b, i)) = σ(read(c, j)). Otherwise, the adapted congruence would be violated. Thus,
σ(a)(ν) = σ(read(b, i)) = σ(read(c, j)), which is well-defined.

Now, assume that there does not exist a read(b, i) ∈ ρ(a) such that σ(i) = ν. Then,
σ(a)(ν) = 0 which is well-defined.

Proposition 9.2. Array model σ respects read semantics of TA.

Proof. Let a be a term of sort Array , and let i be a term of sort Base. Let read(a, i) occur
in π, then rule I guarantees read(a, i) ∈ ρ(a). By definition, σ(a)(σ(i)) = σ(read(a, i)) and
thus σ respects read semantics on arrays.

Proposition 9.3. Array model σ respects write semantics of TA.

Proof. In particular, we show that σ respects write semantics on arrays. Let a be a term
of sort Array , and let i, j and e be terms of sort Base. Let write(a, i, e) occur in φ resp. π.
Let ν be a constant value of sort Base. Again, the proof is by cases.

First, assume that σ(i) = ν. We know that preprocessing step 2 adds the top level
constraint read(write(a, i, e), i) = e. Therefore, read(write(a, i, e), i) ∈ ρ(write(a, i, e)).
Since σ is a B-model, σ(read(write(a, i, e), i)) = σ(e). Therefore, σ(write(a, i, e))(ν) =
σ(read(write(a, i, e), i)) = σ(e) which obviously respects update semantics of writes.

Second, assume that σ(i) 6= ν. Assume that there exists a read(b, j) with σ(j) = ν

in ρ(write(a, i, e)). As σ(j) = ν and σ(i) 6= ν, rule D guarantees that read(b, j) ∈ ρ(a).
Therefore, σ(write(a, i, e))(ν) = σ(read(b, j)) = σ(a)(ν). Analogously, in addition to σ(i) 6=
ν, assume that there exists a read(b, j) with σ(j) = ν in ρ(a). As σ(j) = ν and σ(i) 6= ν,
rule U guarantees that read(b, j) ∈ ρ(write(a, i, e)). Therefore, σ(a)(ν) = σ(read(b, j)) =
σ(write(a, i, e))(ν).

Finally, assume that there does not exist a read(b, j) with σ(j) = ν in ρ(write(a, i, e))
resp. ρ(a). Then, σ(write(a, i, e))(ν) = 0 = σ(a)(ν).

Proposition 9.4. Array model σ respects extensional semantics of TA.

186

Lemmas on Demand for the Extensional Theory of Arrays

Proof. Let a and c be terms of sort Array with a = c in φ. We have to show:

σ(a = c) ⇔ ∀ν (σ(a)(ν) = σ(c)(ν))

The proof is by cases. First, we show:

σ(a 6= c) ⇒ ∃ν (σ(a)(ν) 6= σ(c)(ν))

For each equality a = c between terms of sort Array , preprocessing step 1 adds the constraint
a 6= c⇒ read(a, λ) 6= read(c, λ). If DPB finds a model, then there must be an assignment to
λ such that σ(read(a, λ)) 6= σ(read(c, λ)), and therefore σ(a)(ν) 6= σ(c)(ν) with ν = σ(λ).

Now, we show:
σ(a = c) ⇒ ∀ν (σ(a)(ν) = σ(c)(ν))

Assume that there exists a read(b, j) with σ(j) = ν in ρ(a). Rule R guarantees that if
σ(a = c) = ⊤, then read(b, j) is also in ρ(c). Therefore, σ(a)(ν) = σ(read(b, j)) = σ(c)(ν).

Analogously, assume that there exists a read(b, j) with σ(j) = ν in ρ(c). Rule L guaran-
tees that if σ(a = c) = ⊤, then read(b, j) is also in ρ(a). Therefore, σ(c)(ν) = σ(read(b, j)) =
σ(a)(ν).

Finally, assume that there does not exist a read(b, j) in ρ(a) resp. ρ(c). Then, σ(a)(ν) =
0 = σ(c)(ν).

Proposition 9.5. DPA is terminating.

Proof. In order to prove overall termination we show that only finitely many lemmas can
be generated, and each loop iteration rules out at least one lemma from being regenerated.
In the proof of proposition 10.1 we show that the number of lemmas is bounded, i.e. only
finitely many lemmas can be generated.

Added lemmas can not be regenerated as for each lemma α(lemma(π, σ)) added in
the inner loop, σ(α(lemma(π, σ))) = ⊥. In future calls to the decision procedure DPB,
returning a satisfying assignment, this lemma has to be satisfied, and can thus not be
regenerated.

Now we are able to prove that our approach is complete.

Proposition 9.6. If φ is unsatisfiable modulo TA ∪ TB, then DPA(φ) = unsatisfiable.

Proof. We prove the contrapositive. From proposition 9.2, 9.3 and 9.4 we obtain that if
DPB finds a B-model σ for α(π) and the consistency checker does not find a conflict, then
this model can always be canonically extended to an A-model of π. From proposition 4.1
we obtain that φ is equisatisfiable to π, and obviously, σ is also a model of φ. Therefore,
in combination with proposition 9.5, which shows that DPA is terminating, our approach
is complete.

10. Complexity

The complexity of our approach depends both on the complexity of the consistency checking
algorithm and the complexity of our abstraction refinement, i.e. the upper bound on number
of lemmas that have to be generated. We analyze both in the next two subsections.

187

R. Brummayer and A. Biere

10.1 Consistency Checking

The complexity of the consistency checking algorithm is quadratic in the size of π, measured
in the number of rule applications that update ρ. The worst case occurs if each read is
propagated to each term of sort Array . In the following, we assume consistency checking is
performed on-the-fly, i.e. we interleave consistency checking with read propagation. To be
precise, whenever we propagate a read to its next destination d, we check if there is already
a read in ρ(d) that has the same assignment to its index. If this is the case, we immediately
perform the consistency check.

Each rule application requires at most one update of ρ(d) and one check according to
rule C. One check is enough as each read in ρ(d) with the same assignment to its index
must have the same assignment to its read value. Otherwise, the consistency checker would
have found a conflict before. Therefore, it is sufficient to compare the propagated read with
only one representative read. See section 11.2 for a more detailed discussion.

10.2 Upper Bound on Number of Lemmas

Proposition 10.1. The number of lemmas is bounded by O(n2 · 2n) with n = |φ|.

Proof. Let r be the number of reads in φ, w be the number of writes in φ, and q be the
number of equalities between terms of sort Array in φ. Then, π has s = r + w + 2q reads,
and the same number of writes and equalities between terms of sort Array .

By checking C on-the-fly in each update to ρ, we can make sure that propagation
paths do not overlap. Therefore, writes from which the indices stem are all different.
Therefore, each lemma consists of at most w comparisons of read and write indices, at most
q boolean literals, exactly one read/read index comparison, and exactly one read/read value
comparison. There are exactly two read indices in each lemma. Finally, each array equality
contributes at most one literal. Therefore, the number of different lemmas is bounded by

2q · 2w · s2 = 2q+w · s2 ≤ 2n · s2 = O(n2 · 2n)

using q + r + w ≤ n = |φ| and s = O(n).

Note that rules L resp. R add abstraction variables for equalities between terms of sort
Array to a lemma only if they have been assigned to ⊤ by DPB. Therefore, they can never
occur negatively. Either a boolean abstraction variable occurs positively or not at all.

11. Implementation Details

We implemented DPA in our SMT solver Boolector [20]. Boolector is an efficient SMT
solver for the quantifier-free theories of bit-vectors and arrays. Furthermore, it may also
be used as model checker for safety properties in the context of bit-vectors and arrays [21].
PicoSAT [11] is used as backend in DPB.

Boolector entered the SMT competition SMT-COMP’08 [6] for the first time. It par-
ticipated in the quantifier-free theory of bit-vectors QF BV, and in the quantifier-free theory
of bit-vectors, arrays and uninterpreted functions QF AUFBV, and won both. In QF AUFBV

Boolector solved 16 formulas more than Z3.2, 64 more than last year’s winner Z3 0.1 [29],
and 103 more than CVC3 [10] version 1.5. In the following, we discuss implementation

188

Lemmas on Demand for the Extensional Theory of Arrays

details and optimizations in the context of lemmas on demand for the extensional theory
of arrays.

11.1 Lemma Minimization

Often, lemmas constructed by our approach can be further minimized. In general, there
may be many different propagation paths that lead to a theory inconsistency. Starting from
the original arrays on which the reads are applied, we respectively perform a breadth-first
search to the array at which the inconsistency has been detected. The breadth-first search
guarantees that we respectively select one of shortest propagation paths. In general, this
leads to stronger lemmas as the propagation conditions are directly used in the premises.

Furthermore, sometimes the premise of a lemma may be even more reduced as some parts
may be already subsumed by other parts. For example, let r1 be read(write(a, j, e1), i1),
and r2 be read(write(a, j, e2), i2). Consider the following formula:

i1 6= j ∧ i2 6= j ∧ r1 6= r2

Let us assume that DPB generates an assignment such that σ(i1) 6= σ(j), σ(i2) 6= σ(j),
σ(i1) = σ(i2) and σ(r1) 6= σ(r2). The consistency checker propagates r1 and r2 down to a
as σ(i1) 6= σ(j) and σ(i2) 6= σ(j). It detects a conflict as σ(i1) = σ(i2), but σ(r1) 6= σ(r2)
and generates the following lemma:

i1 6= j ∧ i2 6= j ∧ i1 = i2 ⇒ r1 = r2

This lemma can be minimized as one inequality is already subsumed by the other in com-
bination with the equality of the read indices. For example, it can be minimized to:

i1 6= j ∧ i1 = i2 ⇒ r1 = r2

If we encode inequality and equality into CNF, then the shorter lemma results in fewer
clauses than in the original case. This may be beneficial for the runtime of the SAT solver.

In general, the indices that are used to decide whether the read should be propagated
or not, e.g. j in the previous example, can be uniquely hashed. Each lemma contains
index(read1) = index(read2) in the premise. Therefore, it is sufficient to encode that either
index(read1) or index(read2) is unequal to write indices that occur in both propagation
paths.

11.2 Implementing ρ

The set of reads ρ can be efficiently implemented by hashtables. For each term of sort Array
a hashtable is created. A concrete assignment to a read index can be used as hash value.
In the following, we assume consistency checking is performed on-the-fly, i.e. we interleave
consistency checking with read propagation. Whenever we propagate a read to its next
destination d, we check if there is already a read in ρ(d), which has the same assignment to
its index. If this is the case, we immediately perform the consistency check.

In general, for each term a of sort Array it is sufficient to maintain exactly one read
per concrete assignment to its read index in ρ(a). If we have multiple reads in ρ(a) that
have the same assignment to the index values and the same assignment to the read values,

189

R. Brummayer and A. Biere

then we can think of them as one equivalence class. In particular, they must have the
same assignment to the read values. Otherwise, on-the-fly consistency checking would
have found a conflict before. Therefore, it is sufficient to remember and propagate only
one representative per class. Whenever we propagate one particular read r1 to its next
destination d and there is already a read r2 in ρ(d) which has the same assignment to index
value and read value, then we do not have to insert r1 into ρ(d) as we already have the
representative r2 in ρ(d). Therefore, we can skip the current propagation path of r1 as we
already have the representative r2 in ρ(d) which is also propagated further if necessary.

Implementing ρ by hashtables results in fewer propagations and consistency checks. In
particular, in each propagation, consistency checking must only be performed with one
representative instead of all propagated reads that have the same assignment to the index
values and the same assignment to the read values.

11.3 Positive Array Equalities

Whenever the boolean structure of the original formula prevents DPB from setting the
boolean abstraction variable of an array equality to ⊥, then preprocessing step 1 can be
skipped. Recall that preprocessing step 1 adds one pair of virtual reads as witness for array
inequality. However, if DPB can not set the abstraction variable to ⊥, then the virtual reads
do not have to be introduced. Rules L and R are sufficient to enforce extensional consistency.
The virtual reads can be safely omitted, which is beneficial for DPA as fewer reads have to
be propagated and checked. Furthermore, this decreases the number of potential lemmas.
As an example for a situation where preprocessing step 1 can be skipped, think of a formula
where the boolean structure is in CNF and each array equality occurs only positively. An
example where preprocessing step 1 can be omitted is shown in Fig. 13.

11.4 Treating Writes as Reads

Inside Boolector we use a polymorphic node type called access. A node of this type is either
a read or a write. The main idea of this implementation technique is that we can treat a
write as read on itself. If we have a write write(a, i, e), then (A2) guarantees that a read at
index imust have read value e. Instead of explicitly introducing these reads by preprocessing
step 2, we can interpret a write as read on itself. We use the polymorphic functions index
and value on nodes of type access. If we use them on a node representing a read, they return
read index resp. read value. However, if we use them on a node representing write(a, i, e),
they return write index i resp. write value e.

Let w be write(a, i, e) and let r be read(w, i). If we apply index to r , we obtain i which
is the same as applying the function directly on w. If we apply value to r, we get a read
value which has to be equal to e. However, instead of introducing an abstraction variable
for r and refining it to e, we can use e directly, which is what we obtain if we apply value
to w directly.

In our implementation, we do not actually propagate reads. However, we propagate
objects of type access which are either reads or writes. In this way, we also ensure congruence
on write values. Therefore, we can completely skip preprocessing step 2.

190

Lemmas on Demand for the Extensional Theory of Arrays

12 1 2

1
2 3 1 2 3

eq

1 2

a

b c

i j

k er1 r2

w1 w2

α(w1 = w2)

Figure 13. Formula φ resp π for example 7 is shown left. Preprocessing step 1 is omitted as

the equality between w1 and w2 occurs only positively. Preprocessing step 2 is omitted as it is not

necessary if writes are treated and propagated as reads. The abstraction α(π) is shown right. The

abstraction variables α(r1) and α(r2) are not shown as they are not reachable from the root.

Example 7.

Let φ resp. π be as shown left in Fig. 13. The abstraction α(π) is shown right.

We run DPB on α(π) and assume that DPB generates a model σ such that
σ(α(w1 = w2)) = ⊤, σ(α(r1)) = σ(k), and σ(α(r2)) 6= σ(e).

We perform on-the-fly consistency checking in depth-first search manner. Initially,
ρ(a) = {r1, r2}, ρ(w1) = {w1}, and ρ(w2) = {w2} We treat w1 as read and propagate
it to w2 as σ(α(w1 = w2)) = ⊤. We update ρ(w2) to {w1, w2}. We check ρ(w2), find
an inconsistency according to rule C, as σ(α(r1)) = σ(k), but σ(α(r2)) 6= σ(e). We
generate the following lemma:

r1 = k ∧ w1 = w2 ⇒ r2 = e

11.5 Synthesis on Demand

Boolector uses a functional representation for bit-vectors. Each term of type bit-vector is
mapped to a vector of And-Inverter Graphs (AIGs) [41]. For example, a term that represents
the multiplication of two 32 bit-vectors is mapped to a multiplication circuit represented by
AIGs. Each AIG of the resulting AIG vector represents one output of the circuit. During
the construction of the AIGs, local two-level rewriting is performed [18]. The AIG vectors
are encoded into CNF and incrementally added to the SAT solver.

In principle, each term could be encoded into AIG vectors and then encoded into CNF
up front. However, this is not always necessary as a theory conflict which leads to unsat-

191

R. Brummayer and A. Biere

isfiability may occur in one small part of the formula. For example, consider the following
formula. Let us assume that i, j, x and y are bit-vectors with bit-width 64 and udiv repre-
sents unsigned bit-vector division:

i 6= j ∧ read(write(a, j, udiv(x, y)), i) 6= read(a, i)

As i 6= j, the two reads have to be equal according to (A1). Hence, this formula is unsatisfi-
able regardless of the unsigned division. If we synthesize AIGs resp. encode to CNF up front,
then the SAT solver will unnecessarily have to handle a complex 64 bit division circuit on
the CNF layer, although unsatisfiability can be easily concluded without it. Therefore, we
postpone AIG synthesis resp. CNF encoding of read indices, write indices, and write values.
As recently as the consistency checker has to examine the concrete bit-vector assignment,
the synthesis and encoding is performed, and the SAT solver is called incrementally.

In [25] for each call to the SAT solver the CNF is generated from scratch. We incre-
mentally add clauses as required. The incremental usage of the SAT solver follows [26, 32]
as implemented in MiniSAT [33] and PicoSAT [11]. Lazy synthesis is applied in our array
consistency checking algorithm if we find a read or write operation, for which the bit-vector
arguments have not been synthesized yet. At this point the SAT solver already determined
a model for previously added clauses. This boolean model needs to be extended to new
CNF variables and clauses synthesized lazily for those unsynthesized read or write indices
and write values. These indices and values are unconstrained at this point and thus the
SAT solver should always be able to extend the model.

However, due to restarts [39] even if phase saving [11, 47] is employed, the SAT solver
is free to flip a value of the original model. If this happens, the array consistency algorithm
has to be aborted and restarted from scratch: the read and write propagations performed
up to this point may have become invalid. In our experiments this rarely happens, simply
because phase saving tries to keep the old model. However, ignoring changed values in the
old model would render the array consistency checking algorithm incomplete and unsound.

In our original version we simply restarted the array consistency checking algorithm
as soon as new indices or write values have been synthesized lazily. The overhead can be
avoided by adding a new API function to the SAT solver that determines if an incremental
call to the SAT solver has changed the model generated in a previous SAT-call to the SAT
solver. This can be implemented in a conservative way by monitoring forced assignments
of variables. If a forced assignment assigns a value to a variable which is different from the
previously saved assigned value to this variable, and this variable is not a new synthesis
variable, then the old model has changed. In the current implementation we conservatively
mark the old model as changed, even if later in the same call to the SAT solver these changes
are reverted.

It would also be possible to precisely determine whether the old model has changed by
saving the old model value instead of misusing saved phases. Another option is to ask the
SAT solver to search for a model that extends the previous model. Both alternatives are
more complex to implement, and we leave it for future work to determine whether they are
more effective than our current solution.

192

Lemmas on Demand for the Extensional Theory of Arrays

11.6 CNF Encoding

In Boolector lemmas are directly added on the CNF level. No additional terms have to be
created. Therefore, we need an efficient way to encode lemmas with bit-vector equalities
and inequalities to SAT. For example, assume the congruence axiom (A1) is violated and
we add the bit-vector lemma i = j ⇒ v = w. In order to encode this lemma to CNF, we
introduce a fresh boolean variable e:

(i = j ⇒ e) ∧ (e ⇒ v = w)

This formula is equisatisfiable and can be rewritten into (i 6= j ∨ e) ∧ (ē ∨ v = w). Let m
be the number of bits of i and j, and let n be the number of bits of v and w. We introduce
m fresh variables dk and encode i 6= j as follows:

m
∧

k=1

(

(ik ∨ jk ∨ d̄k) ∧ (̄ik ∨ j̄k ∨ d̄k)
)

If ik = jk, then dk is forced to ⊥. However, if ik 6= jk, then dk is unconstrained and can be
set to ⊤. In order to encode v = w, we add the following clauses:

n
∧

k=1

(

(v̄k ∨ wk ∨ ē) ∧ (vk ∨ w̄k ∨ ē)
)

Finally, we relate the two parts through a linking clause:

e ∨
m
∨

k=1

dk

The idea of this encoding is as follows. If i 6= j, then they differ in at least one bit. Therefore,
one dk can be set to ⊤ to satisfy the linking clause. The variable e is now unconstrained
and can be set to ⊥. Therefore, v and w are not forced to be equal. However, if i = j, each
dk is ⊥. In order to satisfy the linking clause, e has to be set to ⊤, which forces v and w to
be equal.

In general, each lemma has the following form 2., after eliminating implication:

x
∨

k=1

bk ∨

y
∨

k=1

(uk 6= vk) ∨
z

∨

k=1

(sk = tk)

Assuming all bit-vectors have n bits, the CNF has 2 ·n · (y+z)+1 clauses and y ·n+z fresh
boolean variables. The clauses are all ternary, except the linking clause of size x+ y ·n+ z.

In principle, bit-vector equalities and inequalities can be natively supported by SAT
solvers, similar as in [12]. All different constraints are directly supported by PicoSAT. This
approach can simplify implementation complexity of SMT solvers that support bit-vectors
and is scheduled as future work.

2. Our lemmas have exactly one inequality (y = 1), but we discuss the general case.

193

R. Brummayer and A. Biere

12. Experiments

We compared Boolector version 0.8 to STP version 0.1-11-18-2008. Recall that this article
is an improvement and extension of a preliminary version presented at the SMT’08 work-
shop [19]. We do not repeat our experiments in [19] and we also do not repeat the results of
the SMT competition SMT-COMP’08 [6], where Boolector clearly won the division of the
quantifier-free theory of bit-vectors, arrays and uninterpreted functions QF AUFBV, and the
quantifier-free theory of bit-vectors QF BV. Nevertheless, as Boolector and STP have similar
approaches we provide additional experiments comparing the performance of Boolector to
the performance of STP. See the related work section 13 for a comparison between the
approaches of Boolector and STP.

STP does not support equalities between arrays. However, many interesting and chal-
lenging array benchmarks in the SMT-LIB [9] compare arrays for equality, i.e. are ex-
tensional. Furthermore, STP reads the CVC Lite [5] format [1] while Boolector reads
BTOR [21] and SMT-LIB format [48]. This was a problem as formula conversion with the
help of CVC3 was not always possible. Therefore, we had to restrict our experiments to
non-extensional examples that were either available both in SMT-LIB and in CVC format
or just in one format and conversion to the other format was possible.

We selected the STP benchmarks that are available in QF AUFBV in the SMT-LIB [9]. Un-
fortunately, testcase10 and testcase15 are not available. We omitted two cksumcookie

benchmarks as they were trivial for Boolector and STP. Furthermore, we selected seven
benchmarks representing formal verification of the bubble sort algorithm for array elements
of 32 bit. The number within the name of the benchmark represents the size of the array.
These benchmarks are also part of the SMT-LIB and can be found in QF AUFBV.

We ran our benchmarks on our cluster of 3 GHz Pentium IV with 2 GB main memory,
running Ubuntu Linux. We set a time limit of 1800 seconds and a memory limit of 1500
MB. The results are shown in table 2. The memory is shown in MB and the time in seconds.
Boolector clearly outperforms STP 3..

13. Related Work

Ganesh et al. present a decision procedure for the theory of bit-vectors and arrays [36],
but without support for equalities on arrays. Similar to our approach, they use word-
level preprocessing and an abstraction refinement loop. They implemented their decision
procedure in STP, which is an SMT solver optimized for large problems in software analysis
applications. Unfortunately, their decision procedure is presented without details. Neither
in [35] nor in [36] are details on their abstraction refinement and lazy axiom instantiations
presented. Neither do they prove soundness nor completeness.

Ganesh points out in [35] that efficiently handling nested writes is crucial for SMT
solvers applied to software verification. An eager read-over-write elimination applied to
deeply nested writes creates a new copy of the DAG of writes for every distinct read index.

3. Note that STP can not decide satisfiability for benchmark noregions-fullmemite. After a few seconds
it terminates with exit code 0, but does not print out the result. First, we thought that this might
be a problem due to the YACC-parser. However, also CVC3 uses a YACC-parser and it can parse the
benchmark without problems. Setting the stack size of the STP YACC-parser to unlimited did also not
help. Therefore, it remains unclear why STP terminates without a result.

194

Lemmas on Demand for the Extensional Theory of Arrays

Table 2. Experimental comparison between STP and Boolector.

STP Boolector
Benchmark Status Mem Time Mem Time
610dd9dc sat out of

memory
out of

memory 9 34

blaster-concrete unsat 48 2 23 0

blaster-small sat 2 0 0 0
blaster unsat 85 5 31 0

blaster-wp-13 unsat 48 2 30 0

blaster-wp-4 unsat 151 10 38 1

blaster-wp-8 unsat 68 4 30 0

bubsort005un unsat 2 4 1 0

bubsort006un unsat 3 30 1 1

bubsort007un unsat 6 151 1 8

bubsort008un unsat 11 784 2 26

bubsort009un unsat out of
time

out of
time 2 72

bubsort010un unsat out of
time

out of
time 4 325

bubsort012un unsat out of
time

out of
time

out of
time

out of
time

cmu-model15 sat 11 2 5 0

cmu-model16 sat 11 2 5 0

cmu-model17 sat 11 2 4 0

ff unknown out of
memory

out of
memory

out of
memory

out of
memory

grep0065 unsat 43 4 2 0

grep0084 sat 183 116 18 15

grep0095 sat 198 127 19 17

grep0106 sat 175 116 20 18

grep0117 sat 193 115 20 19

grep0777 sat out of
memory

out of
memory 33 99

noregions-fullmemite unknown
no

result
no

result 380 40

noregions-stpmem unknown out of
time

out of
time 106 1526

testcase01 sat 22 2 25 52
testcase02 sat 466 50 413 14

testcase03 sat 574 66 500 18

testcase04 sat 590 69 514 18

testcase05 sat 589 68 513 18

testcase06 unsat 297 31 490 13

testcase07 unsat 298 32 491 13

testcase08 unsat 293 31 490 12

testcase09 sat 584 68 513 18

testcase11 sat 323 15 515 13

testcase12 sat 346 16 550 15

testcase13 sat 67 5 79 2

testcase14 sat 63 28 58 1

testcase16 sat 952 50 318 75
testcase17 sat 347 23 335 12

testcase18 sat 43 4 30 87
testcase19 sat 28 3 28 3
testcase20 sat 393 45 505 117
testcase21 sat 390 35 520 53
thumbnail-spin1 sat 1116 75 966 42

195

R. Brummayer and A. Biere

This eager rewriting blows up in space and is therefore not appropriate, which is also
confirmed by our experiments in [19]. Similar to our approach, Ganesh et al. handle read
over writes lazily. Unfortunately, it remains unclear how their refinement actually works.
In [35] they give a hint that they use the following policy in their refinement. If they find
a spurious model, then they take a non-constant array index term for which at least one
array axiom is violated, and add all of the violated axioms involving that term. This is in
contrast to our approach, where we always add exactly one lemma.

It is difficult to compare STP to Boolector as STP does not support equalities between
arrays. Many interesting and challenging array benchmarks in the SMT-LIB [9] compare
arrays for equality. Therefore, we can not compare the performances of Boolector and
STP on those examples. Nevertheless, our experiments on non-extensional examples, i.e.
examples without comparing arrays for equality, in section 12 clearly show that Boolector
outperforms STP, even on many examples for which STP has been optimized.

Stump et al. describe a decision procedure for an extensional theory of arrays in [51]
and discuss earlier work. They present their decision procedure as a proof system and prove
its correctness. Their approach works in two phases. In the first phase a set of subgoals
is created such that no subgoal contains write expressions, which may blow up in space.
This is in contrast to our approach where we do not eagerly eliminate write expressions.
Finally, the original goal is satisfiable if and only if one of the subgoals is satisfiable. The
key concept of their approach is to use partial equations of the following form:

a =I b ⇔ ∀i. i 6∈ I → read(a, i) = read(b, i)

The set I is a set of indices on which the arrays do not have to be equal. With these partial
equations, write expressions are eliminated in the following way:

write(a, i, e) = b ⇔ a ={i} b ∧ read(b, i) = e

Note that the idea of adding the constraint read(b, i) = e to ensure write value consistency
is similar to our preprocessing step 2. The complexity of their approach is O(2N lg N), where
N is the size of the original goal.

Bradley et al. introduce the array property fragment in [16]. The main idea of this frag-
ment is that array indices can be universally quantified with some restrictions. The restric-
tions are necessary to avoid undecidability. Array property fragments allow the expression
of bounded and unbounded properties of arrays, e.g. array equality, universal properties,
partitioning and sorting. Unlike our decision procedure, their decision procedure has to
eliminate write expressions, which may blow up in space. Furthermore, the formula has to
be put into negation normal form, which is also not necessary for our approach. Universally
quantified subterms are reduced to finite conjunctions. This is done by instantiating quan-
tified variables over a set of index terms. In [17] Bradley et al. prove that simple extensions
of the array property fragment, e.g. nested reads, may already result in a fragment for which
satisfiability is undecidable. We conjecture that our approach can be extended to handle
interesting properties of the array property fragment as well.

In [37] Ghilardi et al. consider extensions of the theory of arrays with extensionality
where indices have the algebraic structure of Presburger arithmetic. Their extensions con-
sider characteristics like dimension and sortedness. They integrate available decision pro-

196

Lemmas on Demand for the Extensional Theory of Arrays

cedures for the theory of arrays and Presburger arithmetic in combination with automatic
instantiation strategies.

In [38] Goel et al. introduce a rule-based axiom-instantiating decision procedure for the
parametric theory of arrays, where formulas can refer to multiple and arbitrarily nested
array types. Like our approach, they use lazy axiom instantiations. Interestingly, theories
of arrays are interpreted in the context of updatable functions, i.e. read is interpreted as
a function application and write as an update operator. They extended the congruence-
closure module of the SMT solver DPT [2] in order to implement their approach. This is
contrast to our approach, which is not based on congruence-closure. Unfortunately, the
effectiveness of our implementation can not be compared to their implementation as they
only report on experimental results in QF AUFLIA, but not in QF AUFBV.

Manolios et al. introduce a memory abstraction algorithm in the context of the Bit Level
Analysis Tool BAT in [43]. Memories are functionally represented with the help of array
semantics, i.e. get and set in BAT correspond to read and write in SMT. Their approach
uses equivalence classes of memories. Index values, i.e. bit-vector addresses that are used
in set and get, are analyzed, and shorter bit-vector addresses for addressing the abstract
memory are created. In addition to memory abstraction, rewriting is performed to simplify
memory accesses.

In [14] Bofill et al. introduce a write base approach in the context of DPLL(T) to handle
the extensional theory of arrays. Their approach does not eliminate write expressions and
does not lazily instantiate array axioms. However, the theory solver asks the boolean engine
to split on demand on equality literals between indices.

The theorem prover Simplify [31] uses Nelson-Oppen [45] to combine decision proce-
dures for several theories, e.g. arrays, maps and sets, and uses a matcher to reason about
quantifiers.

Finally, UCLID [42] is a decision procedure for the theories of uninterpreted functions,
integer linear arithmetic, and arrays which supports some limited forms of quantification.
UCLID uses eager translation to SAT and lambda expressions for arrays. Furthermore,
Bryant et al. propose a decision procedure for bit-vector arithmetic with automatic ab-
straction refinement in [25]. The procedure is implemented in UCLID. It alternates between
under- and over-approximations of the original formula.

14. Conclusion

We discussed lemmas on demand for the extensional theory of arrays. In particular, we
presented our preprocessing, formula abstraction, consistency checking, and abstraction re-
finement, i.e. lemma generation on demand. Furthermore, we proved that our approach
is sound and complete, and provided a formal description of our abstraction refinement.
We discussed complexity and provided implementation details and optimizations that are
important for real implementations. Then, we discussed related work. Our overall exper-
iments and the SMT competition in 2008 showed that our approach implemented in our
SMT solver Boolector is faster than other state-of-the-art solvers. Similar to model checking
where abstraction is used to handle the state explosion problem, abstraction techniques are
the key to efficiently decide large and complex SMT formulas.

197

R. Brummayer and A. Biere

14.1 Acknowledgements

We want to thank Nikolaj Bjørner, Leonardo De Moura, Robert Nieuwenhuis and anony-
mous reviewers for their helpful comments on preliminary versions.

References

[1] CVC Lite Documentation, 2008. http://verify.stanford.edu/CVCL/doc/.

[2] Decision Procedure Toolkit, 2008. http://sourceforge.net/projects/dpt.

[3] W. Ackermann. Solvable Cases of the Decision Problem. Studies in Logic and the
Foundations of Mathematics. North-Holland, 1954.

[4] C. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations of First-
Order Theories. PhD thesis, Stanford University, 2003.

[5] C. Barrett and S. Berezin. CVC Lite: A New Implementation of the Cooperating
Validity Checker. In Proc. CAV’04, pages 515–518. Springer, 2004.

[6] C. Barrett, M. Deters, A. Oliveras, and A. Stump. SMT-Comp, 2008.
www.smtcomp.org.

[7] C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order Formulas by
Incremental Translation to SAT. In Proc. CAV’02, pages 236–249. Springer, 2002.

[8] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on Demand in SAT
Modulo Theories. In Proc. LPAR’06, pages 512–526. Springer, 2006.

[9] C. Barrett, S. Ranise, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2008.

[10] C. Barrett and C. Tinelli. CVC3. In Proc. CAV’07, pages 298–302. Springer, 2007.

[11] A. Biere. PicoSAT Essentials. Journal on Satisfiability, Boolean Modeling and Com-
putation (JSAT), 4:75–97, 2008.

[12] A. Biere and R. Brummayer. Consistency Checking of All Different Constraints over
Bit-Vectors within a SAT-Solver. In Proc. FMCAD’08, pages 223–226. IEEE, 2008.

[13] A. Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability. IOS Press, 2009.

[14] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell, and A. Rubio. A
Write-Based Solver for SAT Modulo the Theory of Arrays. In Proc. FMCAD’08.
IEEE, 2008.

[15] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P. van Rossum, and
R. Sebastiani. Efficient Satisfiability Modulo Theories via Delayed Theory Combina-
tion. In CAV’05, pages 335–349. Springer, 2005.

198

http://verify.stanford.edu/CVCL/doc/
http://sourceforge.net/projects/dpt
www.smtcomp.org
www.SMT-LIB.org

Lemmas on Demand for the Extensional Theory of Arrays

[16] A. Bradley and Z. Manna. The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer, 2007.

[17] A. Bradley, Z. Manna, and H. Sipma. What’s Decidable About Arrays? In Proc. VM-
CAI’06, pages 427–442. Springer, 2006.

[18] R. Brummayer and A. Biere. Local Two-Level And-Inverter Graph Minimization with-
out Blowup. In Proc. MEMICS’06, pages 32–38. Faculty of Information Technology,
Brno University, 2006.

[19] R. Brummayer and A. Biere. Lemmas on Demand for the Extensional Theory of
Arrays. In Proc. SMT’08. ACM, 2008.

[20] R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and
Arrays. In Proc. TACAS’09, pages 174–177. Springer, 2009.

[21] R. Brummayer, A. Biere, and F. Lonsing. BTOR: Bit-Precise Modelling of Word-Level
Problems for Model Checking. In Proc. BPR’08. ACM, 2008.

[22] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel, A. Palti, and
R. Sebastiani. A Lazy and Layered SMT(BV) Solver for Hard Industrial Verification
Problems. In Proc. CAV’07, pages 547–560. Springer, 2007.

[23] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, A. Santuari, and R. Sebastiani.
To Ackermann-ize or Not to Ackermann-ize? On Efficiently Handling Uninterpreted
Function Symbols in SMT (EUF ∪ T). In Proc. LPAR’06, pages 557–571. Springer,
2006.

[24] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. Delayed Theory
Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative
Analysis. In Proc. LPAR’06, pages 527–541. Springer, 2006.

[25] R. Bryant, D. Kroening, J. Ouaknine, S. Seshia, O. Strichman, and B. Brady. Deciding
Bit-Vector Arithmetic with Abstraction. International Journal on Software Tools for
Technology Transfer (STTT), 2008. To appear.

[26] K. Claessen and N. Sörensson. New Techniques that Improve MACE-style Finite Model
Finding. In CADE-19, Workshop W4, Model Computation – Principles, Algorithms,
Applications, 2003.

[27] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Ab-
straction Refinement for Symbolic Model Checking. Journal of the ACM (JACM),
pages 752–794, 2003.

[28] M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-Proving.
Communications of the ACM, 5, 1962.

[29] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proc. TACAS’08, pages
337–340. Springer, 2008.

199

R. Brummayer and A. Biere

[30] L. de Moura and H. Rueß. Lemmas on Demand for Satisfiability Solvers. In
Proc. SAT’02, pages 244–251. Springer, 2002.

[31] D. Detlefs, G. Nelson, and J. Saxe. Simplify: A Theorem Prover for Program Checking.
Journal of the ACM (JACM), 52:365–473, 2005.

[32] N. Eén and N. Sörensson. Temporal Induction by Incremental SAT Solving. Electronic
Notes in Theoretical Computer Science (ENTCS), 89(4), 2003.

[33] N. Eén and N. Sörensson. An Extensible SAT-Solver. In Proc. SAT’04, pages 333–336.
Springer, 2004.

[34] C. Flanagan, R. Joshi, and J. Saxe. Theorem Proving Using Lazy Proof Explication.
In Proc. CAV’03, pages 355–367. Springer, 2003.

[35] V. Ganesh. Decision Procedures for Bit-Vectors, Arrays and Integers. PhD thesis,
Computer Science Department, Stanford University, 2007.

[36] V. Ganesh and D. Dill. A Decision Procedure for Bit-Vectors and Arrays. In
Proc. CAV’07, pages 519–531. Springer, 2007.

[37] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision Procedures for Extensions
of the Theory of Arrays. Annals of Mathematics and Artificial Intelligence, 50:231–254,
2007.

[38] A. Goel, S. Krstic, and A. Fuchs. Deciding Array Formulas with Frugal Axiom Instan-
tiation. In Proc. SMT’08. ACM, 2008.

[39] C. Gomes, B. Selman, and H. Kautz. Boosting Combinatorial Search Through Ran-
domization. In Proc. AAAI’98, pages 431–437. AAAI Press, 1998.

[40] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of View.
Springer, 2008.

[41] A. Kühlmann, M. Ganai, and V. Paruthi. Circuit-based Boolean Reasoning. In
Proc. DAC’01, pages 232–237. ACM, 2001.

[42] S. Lahiri and S. Seshia. The UCLID Decision Procedure. In Proc. CAV’04, pages
475–478. Springer, 2004.

[43] P. Manolios, S. Srinivasan, and D. Vroon. Automatic Memory Reductions for RTL
Model Verification. In Proc. ICCAD’06. ACM, 2006.

[44] J. McCarthy. Towards a Mathematical Science of Computation. In Proc. IFIP
Congress, pages 21–28. North-Holland, 1962.

[45] G. Nelson and D. Oppen. Simplification by Cooperating Decision Procedures. ACM
Transactions on Programming Languages and Systems (TOPLAS), 1:245–257, 1979.

[46] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:
From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal
of the ACM (JACM), 53:937–977, 2006.

200

Lemmas on Demand for the Extensional Theory of Arrays

[47] K. Pipatsrisawat and A. Darwiche. RSat 2.0: SAT Solver Description. Technical
Report D–153, Automated Reasoning Group, Computer Science Department, UCLA,
2007.

[48] S. Ranise and C. Tinelli. The SMT-LIB Standard: Version 1.2. Technical re-
port, Department of Computer Science, The University of Iowa, 2006. Available at
www.SMT-LIB.org.

[49] R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean
Modeling and Computation (JSAT), 3:141–224, 2007.

[50] R. Shostak. Deciding Combinations of Theories. Journal of the ACM (JACM), 31:1–
12, 1984.

[51] A. Stump, C. Barrett, D. Dill, and J. Levitt. A Decision Procedure for an Extensional
Theory of Arrays. In Proc. LICS’01, pages 29–37. IEEE, 2001.

[52] G. Tseitin. On the Complexity of Proofs in Propositional Logics. Automation of
Reasoning: Classical Papers in Computational Logic 1967-1970, 2, 1983. Originally
published 1970.

201

www.SMT-LIB.org

	Introduction
	Theory of Arrays
	Preliminaries
	Preprocessing
	If-Then-Else on Arrays

	Formula Abstraction
	Decision Procedure
	Consistency Checking and Lemma Generation
	Reads
	Writes
	Equalities between Arrays

	Soundness
	Completeness
	Complexity
	Consistency Checking
	Upper Bound on Number of Lemmas

	Implementation Details
	Lemma Minimization
	Implementing
	Positive Array Equalities
	Treating Writes as Reads
	Synthesis on Demand
	CNF Encoding

	Experiments
	Related Work
	Conclusion
	Acknowledgements

