
UNIVERSITÄT LINZ
JOHANNES KEPLER

JKU

Technisch-Naturwissenschaftliche

Fakultät

Efficient SMT Solving for Bit-Vectors and the

Extensional Theory of Arrays

DISSERTATION

zur Erlangung des akademischen Grades

Doktor

im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:

Dipl.-Ing. Robert Daniel Brummayer Bakk. techn.

Angefertigt am:

Institut für Formale Modelle und Verifikation (FMV)

Beurteilung:

Univ.-Prof. Dr. Armin Biere (Betreuung)
Dr. Daniel Kröning

Linz, September, 2009

Abstract

The Satisfiability Modulo Theories (SMT) problem is to decide the satisfia-

bility of a formula expressed in a (decidable) first-order background theory.

In this thesis we address the problem of designing, implementing, testing, and

debugging an efficient SMT solver for the quantifier-free extensional theory

of arrays, combined with bit-vectors. This thesis consists of three main parts.

After an introduction into the problem and its domain, the first part

considers the design of an efficient decision procedure for the quantifier-free

extensional theory of arrays. We discuss the decision procedure in detail. In

particular, we prove correctness, provide a complexity analysis, and discuss

implementation and optimization details.

The second part focuses on the design and implementation details of our

SMT solver, called Boolector. In the SMT competitions 2008 and 2009,

Boolector clearly won the division of the quantifier-free theory of bit-vectors,

arrays and uninterpreted functions QF AUFBV. Moreover, it won the division

of the quantifier-free theory of bit-vectors QF BV in 2008 and achieved the sec-

ond place in 2009. We discuss selected optimization techniques and features

such as symbolic overflow detection, propagating unconstrained variables,

and under-approximation techniques for bit-vectors.

In the last part, this thesis addresses engineering aspects such as testing

and debugging techniques optimized for SMT solver development. We show

that fuzzing and debugging techniques can be successfully applied to SMT

solvers. We report on critical defects, such as segmentation faults and incor-

rect results, which we have found for state-of-the-art SMT solvers. Finally,

we demonstrate the effectiveness of delta-debugging techniques in minimizing

failure-inducing SMT formulas.

Zusammenfassung

Das “Satisfiability Modulo Theories (SMT) Problem” besteht darin, die

Erfüllbarkeit einer Formel, welche in einer Theorie der Logik erster Ordnung

ausgedrückt ist, zu entscheiden. Diese Dissertation behandelt das Problem,

ein effizientes Entscheidungsprogramm für SMT Formeln der extensionalen

Theorie der Arrays in Kombination mit Bit-Vektoren, ohne Quantoren, zu

entwickeln. Dabei wird speziell auf den Entwurf, die Implementierung, das

Testen und die Fehlerbehebung dieses Programms eingegangen. Die vor-

liegende Dissertation besteht aus drei Teilen.

Nach einer Einleitung, welche das behandelte Problem erläutert, widmet

sich der erste Teil dieser Dissertation dem Entwurf eines Entscheidungsver-

fahrens für die extensionale Theorie der Arrays, ohne Quantoren. Es werden

Beweise für die Korrektheit des Verfahrens, eine Komplexitäts-Analyse, sowie

Implementierungs- und Optimierungsdetails behandelt.

Der zweite Teil behandelt den Entwurf und die Implementierung des SMT

Entscheidungsprogramms Boolector. Ausgewählte Optimierungstechniken

und Besonderheiten wie symbolische Überlauferkennung, Propagierung von

Variablen ohne Nebenbedingungen, sowie Unter-Approximations Techniken,

werden vorgestellt. Das Programm Boolector gewann die SMT Wettbe-

werbe in 2008 und 2009 in der Kategorie der extensionalen Theorie der Ar-

rays mit Bit-Vektoren und uninterpretierten Funkionen (QF AUFBV). Darüber

hinaus gewann Boolector 2008 die Kategorie der Bit-Vektoren (QF BV) und

belegte 2009 den zweiten Platz.

Der dritte Teil der Dissertation widmet sich praktischen Problemen wie

dem Testen und Beheben von Fehlern in SMT Entscheidungsprogrammen.

Es wird gezeigt, dass randomisierte Tests und Delta-Debugging Techniken

effektiv für den SMT Bereich eingesetzt werden können.

Acknowledgements

First of all, I want to thank my advisor Armin Biere. Armin was almost

always available for discussions and advices which were important impulses

for my research. I deeply appreciate these discussions and I will miss them.

Moreover, Armin always supported me whenever I wanted to go to interna-

tional conferences and workshops in order to present my current research.

The scientific experiences at these conferences were important mile stones in

my (still ongoing) process of becoming a researcher.

I want to thank the whole SMT community for their efforts in research.

In particular, I want to thank Leonardo de Moura, Cesare Tinelli, Clark

Barrett, Nikolaj Bjørner and Pete Manolios for their helpful discussions.

I want to thank my family. In particular, I want to thank my mother,

Hedwig Bauböck, who was always there for me whenever I needed her. Being

one of the most important persons in my life, she always supported me.

Thank you so much.

I also want to thank my stepfather, Alois Starzengruber, for his support.

Without his support, many things such as learning musical instruments would

not have been possible in my life.

I want to thank my uncle Erhard Stuhl. Although he has never had

anything to do with computers, he was always interested in my research,

which was very encouraging for me.

Last but not least, I want to thank my girlfriend, Doris Knogler, who

was always there for me whenever I needed her. I want to thank her for her

support and for her patience. Although not a computer scientist, she was

always interested in my research and even accompanied me to conferences.

She always listened to me when I excitedly told her details of my new research

ideas. Actually, Doris was so much interested that she learned the DPLL

algorithm. Thank you so much, Dodo.

Robert

Contents

1 Introduction 1

1.1 SAT . 4

1.2 Satisfiability Modulo Theories 4

1.3 Problem Statement and Contributions 5

1.4 Outline . 7

1.5 Previously Published Results 7

2 Extensional Theory of Arrays 9

2.1 Introduction . 9

2.2 Theory of Arrays . 11

2.3 Preliminaries . 12

2.4 Preprocessing . 13

2.4.1 If-Then-Else on Arrays 15

2.5 Formula Abstraction . 15

2.6 Decision Procedure . 17

2.7 Consistency Checking . 18

2.7.1 Reads . 19

2.7.2 Writes . 21

2.7.3 Equalities between Arrays 27

2.8 Soundness . 34

2.9 Completeness . 39

2.10 Complexity . 42

2.10.1 Consistency Checking 42

2.10.2 Upper Bound on Number of Lemmas 43

2.11 Implementation Details . 44

2.11.1 Lemma Minimization 44

2.11.2 Implementing ρ . 45

2.11.3 Positive Array Equalities 46

2.11.4 Treating Writes as Reads 47

2.11.5 Synthesis on Demand 48

2.11.6 CNF Encoding . 50

2.12 Experiments . 52

2.13 Related Work . 57

2.14 Conclusion . 60

3 Boolector 61

3.1 Introduction . 61

3.2 Architecture . 62

3.3 Under-Approximation Techniques 65

3.3.1 Under-Approximation on CNF Layer 67

3.3.2 Refinement Strategies 68

3.3.3 Early Unsat Termination 69

3.3.4 Combining Approximation Techniques 70

3.3.5 Experiments . 71

3.4 Unconstrained Variables . 72

3.4.1 Bit-Vectors . 72

3.4.2 Arrays . 75

3.4.3 If-then-else . 77

3.5 Symbolic Overflow Detection 77

3.5.1 Addition . 78

3.5.2 Subtraction . 79

3.5.3 Multiplication . 80

3.5.4 Division . 84

3.6 Conclusion . 84

4 Testing and Debugging SMT Solvers 85

4.1 Introduction . 85

4.2 Fuzzing . 86

4.2.1 Generating Random Bit-Vector Formulas 87

4.2.2 Bit-vector Arrays . 89

4.3 Delta-Debugging SMT Formulas 90

4.3.1 Delta-Debugging Crashes 91

4.4 Experiments . 92

4.4.1 Bit-Vector Theories . 92

4.4.2 Non-Bit-Vector Theories 95

4.5 Conclusion . 102

5 Conclusion 105

5.1 What’s next? . 106

A The BTOR Format 127

A.1 Overview . 127

A.2 Bit-vectors . 129

A.3 Arrays . 132

A.4 Sequential Extension . 133

A.5 Case Study . 133

A.5.1 FIFOs . 133

A.6 Experiments . 135

B Detected Errors 137

C Curriculum Vitae 141

List of Tables

2.1 Updates for χ. 35

2.2 Experimental evaluation on extensional examples. 53

2.3 Comparison between STP and Boolector, part 1. 55

2.4 Comparison between STP and Boolector, part 2. 56

4.1 Experimental results of fuzzing bit-vector solvers. 95

4.2 Experimental results of fuzzing bit-vector and array solvers. . 96

4.3 First results of delta-debugging bit-vector solvers. 96

4.4 Second results of delta-debugging bit-vector solvers. 97

4.5 Experimental results of fuzzing IDL solvers. 99

4.6 Experimental results of fuzzing array solvers. 100

4.7 Results of delta-debugging IDL solvers. 101

4.8 Results of delta-debugging Barcelogic. 102

A.1 Unary bit-vector operators . 130

A.2 Binary bit-vector operators. 131

A.3 Ternary bit-vector operators. 131

A.4 Miscellaneous bit-vector operators. 131

A.5 Experiments for equivalence checking FIFOs 136

List of Figures

2.1 Overview of DPA. 18

2.2 Algorithmic overview of DPA. 19

2.3 Example 1. 20

2.4 Formula φ for examples 2 and 3. 23

2.5 Formula π for examples 2 and 3. 24

2.6 Formula α(π) for examples 2 and 3. 25

2.7 Extensional formula φ for example 4. 29

2.8 Formula π for example 4 . 30

2.9 Formula α(π) for example 4. 31

2.10 Final consistency checking algorithm 32

2.11 Extensional formula φ for examples 5 and 6. 35

2.12 Formula π for examples 5 and 6. 36

2.13 Formula α(π) for examples 5 and 6. 37

2.14 Example 7. 47

3.1 Schematic overview of Boolector. 64

3.2 Under-approximation techniques 1. 67

3.3 Under-approximation techniques 2. 67

3.4 Early Unsat Termination. 70

3.5 Combining approximation techniques. 71

3.6 Under-approximation experiments (sat). 73

3.7 Under-approximation experiments (unsat). 73

3.8 Leading zeros examination principle. 81

3.9 Leading bits examination principle. 83

A.1 Hardware FIFO. 134

Chapter 1

Introduction

Satisfiability Modulo Theories (SMT) solvers are becoming increasingly im-

portant in academia and industry. They are used to solve real world problems

in domains such as formal verification [Bab08, BBC+06, HHK08, SJPS08,

JES07, LQ08, SGF09], translation validation [ZPG+05, HBG04, BFG+05],

scheduling [BNO+08b], and bug-finding, symbolic execution and testcase

generation [BTV09, CDE08, CGP+06, TdH08, VTP09].

In particular, efficient decision procedures play an important role in for-

mal verification. In principle, the goal of formal verification is to prove or

disprove the correctness of a system with respect to a mathematical spec-

ification. Traditionally, defects in software and hardware have been found

empirically by testing and simulation methods. However, the system com-

plexity is steadily growing, which makes more sophisticated techniques like

formal verification essential.

Bit-precise reasoning is a promising approach to formal verification. Tra-

ditional decision procedures use integers in order to approximate bit-vector

semantics. However, such integer abstractions may not be able to detect im-

portant corner-cases such as overflows. Moreover, reasoning about non-linear

operators is undecidable. Bit-precise reasoning relies on efficient decision

procedures for bit-vectors. While bit-vector operations are used to repre-

sent typical word-level instructions encountered in software and hardware,

bit-vector arrays can be used to represent memory components, e.g. main

1

2 CHAPTER 1. INTRODUCTION

memory in software and caches in hardware.

Traditionally, efficient and well-studied decision procedures such as Bi-

nary Decision Diagrams (BDDs) [McM92] and propositional satisfiability

(SAT) solvers [BCCZ99] were used to perform verification on the bit-level.

However, although verification problems are typically expressed on the word-

level, e.g. as Register Transfer Level (RTL) design, many verification tools

convert the design into a bit-level model and thus lose high-level informa-

tion [KS07]. For example, on the bit-vector level, a 32 bit bit-vector division

circuit can be represented as one term with two 32 bit bit-vector inputs,

while on the pure bit-level it is represented as ten thousands of clauses that

typically contain additional propositional variables introduced during trans-

formation to Conjunctive Normal Form (CNF) by techniques such as the

well-known Tseitin transformation [Tse83].

High-level information can be used to improve scalability and speed up

verification [Sin06, Bru08, KS07]. Highly optimized decision procedures,

e.g. for bit-vectors, can use word-level information to speed up solving time.

For instance, a word-level decision procedure can exploit the input struc-

ture and perform term rewriting techniques that rewrite the input into an

equisatisfiable but computationally less harder formula. Even solving linear

bit-vector arithmetic equations, which eliminates word-level variables and

parts of word-level variables, is possible [GD07]. Moreover, some instances

can be fully decided on the word-level. If the decision problem cannot be

fully decided on the word-level, it can then be translated to pure proposi-

tional SAT, which is an eager approach to SMT.

Roughly, SMT solvers can be interpreted as variants of theorem provers.

However, there are two essential differences between SMT solvers and tradi-

tional theorem provers such as ACL2 [MM00], Isabelle/HOL [NPW02] and

PVS [OSR92]. First, while theorem provers can also handle general interpre-

tations and rich logic frameworks such as Higher Order Logic (HOL) that are

generally undecidable, SMT solvers typically consider decidable fragments of

first-order logic with specific interpretations. The price of considering un-

decidable theories is that theorem provers are typically interactive, i.e. they

need user interactions that guide the theorem prover during the search for

3

the proof, while SMT solvers are fully automatic decision procedures, which

is one of the most important features wanted in practice. Typically, system

designs and specifications are iteratively refined and thus change often. This

is problematic as manually or semi-automatically derived proofs have to be

found by the user again, which is in contrast to fully automatic decision pro-

cedures that do not need any user interaction during the proof search. More-

over, automatic decision procedures can be integrated into theorem provers

to solve sub-problems that occur during the overall proof search.

The second essential difference stems from the fact that theorem provers

try to prove a theorem while SMT solvers try to satisfy a formula, which

can be considered as the dual problem. On the one hand, whenever a user

fails to prove a conjectured theorem with its interactive theorem prover,

it is not known whether the user was not able to find the proof, or the

conjectured theorem simply does not hold. On the other hand, if a formula

is satisfiable, then state-of-the-art SMT solvers can provide a model. In the

context of verification, a satisfiable instance corresponds to a defect that has

been detected. In contrast to propositional satisfiability solvers, SMT solvers

provide a concrete word-level counter-example that can be used in order to

debug the system.

Clarke pointed out in [Cla08] that providing counter-examples is one of

the main features in the success story of model checking. The ability of

providing counter-examples plays an import rule in the debugging process

as concrete counter-examples can be directly used to understand and correct

defects. Tools such as explain [GKL04] have been developed to improve

the quality of counter-examples [GK05] for bounded model checking of C

programs [CKL04].

The theorem proving community has also recognized that the support

of concrete counter-examples, i.e. finding a model [CS03, McC94, ZZ96], is

important. In particular, providing a counter-example in early phases of the-

orem proving sessions is an important feature of theorem provers. Recently,

theorem provers begin to integrate light-weight methods such as random

testing [Owr06, BN04] in order to provide counter-examples for conjectured

theorems up front.

4 CHAPTER 1. INTRODUCTION

1.1 SAT

The propositional satisfiability problem is the well-known classic NP-hard

problem [Coo71]. Let φ be a formula in Conjunctive Normal Form, i.e. φ

consists of a conjunction of clauses, where clauses are disjunctions of literals.

A literal is either a boolean variable or its negation. The SAT problem is to

decide if there exists a satisfying assignment to the boolean variables of φ in

order to satisfy all clauses.

A SAT solver is a program that takes as input a formula φ in CNF

and decides whether it is satisfiable or not. In the satisfiable case, most

state-of-the-art SAT solvers can provide a model, i.e. a satisfying assignment

to the boolean variables of the formula. As each problem in NP can be

converted to SAT in polynomial time, a SAT solver can be used as a generic

decision procedure for various real world problems. Therefore, engineering

efficient SAT solvers is a hot topic in research and many different SAT solving

algorithms have been proposed over the last years. For a recent survey on

SAT we refer the reader to [BHvMW09].

1.2 Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) problem is to decide the satisfia-

bility of a formula expressed in a (decidable) first-order background theory

that is typically a combination of first-order theories. In principle, SMT can

be interpreted as an extension of propositional SAT to first-order logic. In

order to remain decidable, fist-order theories are typically restricted to decid-

able fragments, e.g. quantifier-free fragments. Analogously to SAT, programs

that decide SMT problems are called SMT solvers. SMT solvers implement

highly optimized decision procedures for theories of interest. For example,

important theories are bit-vectors, arrays, difference logic, linear arithmetic

and uninterpreted functions. Theories are typically combined by frameworks

such as Nelson-Oppen [NO79] and Shostak [Sho84].

SMT approaches can be roughly classified as eager or lazy. In the eager

approach, theory constraints are eagerly compiled into the formula, i.e. an

1.3. PROBLEM STATEMENT AND CONTRIBUTIONS 5

equisatisfiable boolean formula is built up front which is passed to an efficient

SAT solver afterwards. In the lazy SMT approach, an efficient DPLL [DLL62]

SAT solver is integrated with highly optimized decision procedures for first-

order theories of interest. The SAT solver is used to reason about the boolean

formula structure, i.e. it enumerates assignments to the propositional skeleton

of the original formula. If such an assignment is found, the theory solvers

are called to decide if it is consistent modulo the background theory. If the

current assignment is inconsistent, then this assignment is ruled out and

the SAT solver is called again. Otherwise, a satisfying assignment has been

found. In principle, decision procedures may be layered, i.e. fast (incomplete)

sub-procedures are called before more expensive ones [BCF+07]. For a survey

on SMT we refer the reader to [Seb07, BHvMW09, KS08, BM07].

1.3 Problem Statement and Contributions

The problem statement of this thesis is to design, implement, test, and debug

an efficient SMT solver for the quantifier-free extensional theory of arrays,

combined with bit-vectors. In contrast to other scientific publications about

SMT, where theoretical aspects are presented solely, this thesis also provides

implementation and optimization details. As already pointed out in the

thesis [Eén05] of Niklas Een, implementation details are often half the result

in the SAT research field. We strongly believe that is the case for research

on SMT as well.

Moreover, this thesis addresses neglected engineering aspects such as test-

ing and debugging techniques optimized for SMT solver development. We

believe that implementing, testing and debugging decision procedures are

non-trivial tasks which have to be considered separately. This is confirmed

by our experiments in section 4.4. Although many current state-of-the art

SMT solvers use decision procedures that have been extensively studied from

a theoretical point of view, at the time of our tests, their concrete implemen-

tations contained defects that lead to crashes and incorrect results.

This thesis makes the following scientific contributions:

6 CHAPTER 1. INTRODUCTION

• A novel and efficient decision procedure DPA for the quantifier-free

extensional theory of arrays. The decision procedure is generic in the

sense that the quantifier-free extensional theory of arrays can be com-

bined with another decidable quantifier-free first-order theory, i.e. it is

not limited to bit-vector arrays. We present DPA in detail including

preprocessing, formula abstraction and consistency checking. Sound-

ness, completeness and termination proofs are used to show overall

correctness. Moreover, implementation and optimizations details are

presented in order to avoid practical pitfalls. Finally, experimental re-

sults confirm that our novel decision procedure DPA is in general more

efficient than previous state-of-the art decision procedures.

• Design, implementation and optimization details for Boolector which

is an efficient SMT solver for bit-vectors and arrays. Boolector en-

tered the annual SMT competition SMT-COMP’08 [BDOS08] in 2008

for the first time. It participated in the quantifier-free theory of bit-

vectors QF BV, and in the quantifier-free theory of bit-vectors, arrays

and uninterpreted functions QF AUFBV, and won both. In QF AUFBV

Boolector solved 16 formulas more than Z3.2, 64 more than the win-

ner of 2007, Z3 0.1 [dMB08], and 103 more than CVC3 [BT07] version

1.5 (2007). In the SMT competition [BDOS09] 2009, Boolector won

again in QF AUFBV and achieved the second place in QF BV. Boolector

implements DPA in order to handle bit-vector arrays.

• Novel under-approximation techniques for bit-vectors and reads on bit-

vector arrays. In contrast to traditional under-approximation refine-

ment techniques, our refinement uses the CNF layer directly, which en-

ables a novel optimization technique called “Early Unsat Termination“.

We present different encoding and refinement strategies. Moreover, we

show how under-approximation techniques for bit-vectors and reads on

bit-vector arrays can be combined with over-approximation techniques.

Experimental results confirm that our under-approximation techniques

combined with over-approximation lead to a speed-up on satisfiable

instances, which may, for instance, enable faster falsification.

1.4. OUTLINE 7

• An adaption of known testing and debugging techniques to the SMT

domain. We adapt and combine fuzz testing and delta-debugging tech-

niques in order to efficiently test and debug SMT solvers. Our experi-

ments show that these techniques are impressingly effective in finding

and minimizing failure-inducing inputs that traditional testing tech-

niques such as unit testing were not able to produce.

1.4 Outline

This thesis is organized as follows. In chapter two we present the novel and

efficient decision procedure DPA for the quantifier-free extensional theory of

arrays. We present the decision procedure in detail, prove its correctness, pro-

vide implementation details and optimizations, and report on experimental

results. In chapter three we discuss our SMT solver Boolector. In particular,

we discuss its architecture and selected features such as under-approximation

techniques, propagation of unconstrained variables, and symbolic overflow

detection. Chapter four focuses on engineering aspects of SMT solver de-

velopment such as testing and debugging. We present black-box fuzzing

and delta-debugging techniques for SMT solvers, and report on experimen-

tal results. Finally, we conclude in chapter five and provide an outlook of

interesting and promising topics that may be important in future research

on SMT.

1.5 Previously Published Results

This thesis is partially based on some of our previous scientific publications

as follows. Chapter two is based on [BB08b] and the follow-up journal ar-

ticle [BB09d]. In particular, we extend the journal article by additional ex-

perimental results published in [BB08b]. Chapter three is based on [BB09a].

The under-approximation techniques are published in [BB09b]. Moreover, we

discuss additional features like propagation of unconstrained variables and

symbolic overflow detection. Chapter four is based on [BB09c]. Furthermore,

8 CHAPTER 1. INTRODUCTION

we provide additional experiments in order to show that our techniques are

not limited to bit-vector theories. Our experiments confirm that they can be

successfully applied to other fragments of first-order logic such as integer dif-

ference logic and the extensional theory of arrays with uninterpreted sorts as

well. Finally, Appendix A, which is partially taken from [BBL08], introduces

Boolector’s internal format BTOR.

Chapter 2

Extensional Theory of Arrays

2.1 Introduction

Arrays are important and widely used non-recursive data-structures, natively

supported by nearly all programming languages. Software systems rely on

arrays to read and store data in many different ways. In formal verification

arrays are used to model main memory in software, and memory components,

e.g. caches and FIFOs, in hardware systems. Typically, a flat memory model

is appropriate and a memory is represented as a one-dimensional array of

bit-vectors. The ability to compare arrays supports complex memory veri-

fication tasks like verifying that two algorithms leave memory in the same

state. Reasoning about arrays is an important issue in formal verification

and efficient decision procedures are essential.

Recently, Satisfiability Modulo Theories (SMT) solvers gained a lot of

interest both in research and industry as their specific decision procedures,

e.g. for the theory of arrays, turned out to be highly efficient. The SMT

framework provides first-order theories to express verification conditions of

interest. An SMT solver decides satisfiability of a formula expressed in a

combination of first-order theories. Typically, specific decision procedures

for these theories are combined by frameworks like [Bar03, NO79, Sho84].

Furthermore, theory combination does not have to be performed eagerly, but

may also be delayed [BBC+05, BCF+06b]. If the formula is satisfiable, then

9

10 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

most SMT solvers can provide a model. In formal verification, a model typi-

cally represents a counter-example which may be directly used for debugging.

SMT approaches can be roughly divided into eager and lazy. In the lazy

approach, the DPLL [DLL62] procedure is interleaved with highly optimized

decision procedures for specific first-order theories. Decision procedures may

be layered, i.e. fast (incomplete) sub-procedures are called before more ex-

pensive ones [BCF+07].

Boolean formula abstractions are enumerated by the DPLL engine. The-

ory solvers compute whether the enumerations produce theory conflicts or

not. Boolean lemmas are used to iteratively refine the abstraction. The

DPLL procedure is responsible for boolean reasoning and is the heart of this

approach. Even case splits of the theory solvers may be delegated to the

DPLL engine [BNOT06]. For more details about lazy SMT we refer the

reader to [NOT06, Seb07].

In the eager approach, the theory constraints are eagerly compiled into

the formula, i.e. an equisatisfiable boolean formula is built up front. For

example, in the theory of uninterpreted functions, function symbols are ea-

gerly replaced by fresh variables. Furthermore, congruence constraints are

added to the formula. These constraints, which are also called Ackermann

constraints [Ack54], are used to ensure functional consistency. Finally, the

formula is checked for satisfiability once. In contrast to the lazy approach,

no refinement loop is needed. For more details about SMT and first-order

theories see [BHvMW09, BM07, KS08, NOT06, Seb07].

We present a novel decision procedure for the extensional theory of ar-

rays. In our decision procedure an over-approximated formula is solved by

an underlying decision procedure. If we find a spurious model, then we add a

lemma to refine the abstraction. This is in the spirit of the counter-example-

guided abstraction refinement approach [CGJ+03, ES03].

We consider the case where the quantifier-free extensional theory of ar-

rays TA is combined with a decidable quantifier-free first-order theory TB,

e.g. bit-vectors. Our decision procedure uses an abstraction refinement sim-

ilar to [BDS02, dMR02, FJS03]. However, we do not use a propositional

skeleton as in [Seb07], but a TB skeleton as formula abstraction. Similar to

2.2. THEORY OF ARRAYS 11

STP [Gan07, GD07], we replace reads by fresh abstraction variables and iter-

atively refine the formula abstraction. Therefore, our abstraction refinements

are in the base theory TB.

We discuss our decision procedure in a more generic context and prove

soundness and completeness. As implementing a decision procedure pre-

sented at an abstract and theoretical level is nontrivial, we also provide im-

plementation details and optimizations, in particular in combination with

fixed-size bit-vectors.

The outline is as follows. In sections 2.2 and 2.3 we provide the necessary

theoretical background. We introduce the extensional and non-extensional

theory of arrays, and discuss preliminaries for our decision procedure. In sec-

tion 2.4 we discuss preprocessing and in 2.5 formula abstraction. In section

2.6 we present a high-level overview of our decision procedure. In section

2.7 we informally introduce the main parts of our decision procedure: con-

sistency checking and lemma generation. In section 2.8 we formally define

how lemmas are generated and prove soundness. In section 2.9 we prove

completeness and discuss complexity in 2.10. In section 2.11 we discuss im-

plementation details and optimizations, and report on experimental results

in section 2.12. In section 2.13 we discuss related work, and finally conclude

in section 2.14.

2.2 Theory of Arrays

In principle, the theories of arrays are either extensional or non-extensional.

While the extensional theories allow to reason about array elements and

arrays, the non-extensional theories support reasoning about array elements

only. McCarthy introduced the classic non-extensional theory of arrays with

the help of read-over-write semantics in [McC62].

A first-order theory is typically defined by its signature and set of axioms.

The theory of arrays has the signature ΣA : {read ,write,=}. The function

read(a, i) returns the value of array a at index i. Arrays are represented

in a functional way. The function write(a, i, e) returns array a, overwritten

at index i with element e. All other elements of a remain the same. The

12 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

predicate = is only applied to array elements. The axioms of the theory of

arrays are the following:

(A1) i = j ⇒ read(a, i) = read(a, j)

(A2) i = j ⇒ read(write(a, i, e), j) = e

(A3) i 6= j ⇒ read(write(a, i, e), j) = read(a, j)

Additionally, we assume that the theory of arrays includes the axioms of

reflexivity, symmetry and transitivity of equality. If we also want to support

equality on arrays, then we need an additional axiom of extensionality:

(A4) a = b ⇔ ∀i (read(a, i) = read(b, i))

Note that (A1) and the implication from left to right of (A4) are instances of

the function congruence axiom schema. Alternatively, (A4) can be expressed

in the following way:

(A4′) a 6= b ⇔ ∃λ (read(a, λ) 6= read(b, λ))

One can interpret (A4′) in the way that if and only if a is unequal to b, we

have to find a witness of inequality, i.e. we have to find an index λ at which

the arrays differ.

We write TA to denote the quantifier-free fragment of the extensional

first-order theory of arrays. Moreover, we write TA |= φ to denote that a

ΣA formula φ is valid in TA (TA-valid). A ΣA-formula is TA-valid if every

interpretation that satisfies the axioms of TA also satisfies φ.

2.3 Preliminaries

We assume that we have a decidable quantifier-free first-order theory TB

supporting equality. TB is defined by its set of axioms and by its signature

ΣB. We assume that ΣA ∩ ΣB = {=}, i.e. the signatures are disjoint, only

equality is shared. Terms are of sort Base. Furthermore, we assume that we

have a sound and complete decision procedure DPB such that:

1. DPB takes a ΣB-formula and computes satisfiability modulo TB.

2.4. PREPROCESSING 13

2. If a ΣB-formula is satisfiable, DPB returns a B-model σ mapping terms

and formulas to concrete values.

In the literature, models are satisfying assignments to variables only. How-

ever, we assume that DPB also provides consistent assignments to arbitrary

terms and formulas in the input formula. Implementing this feature is typi-

cally straightforward as we can replace variables with their concrete assign-

ments and recursively evaluate terms and formulas to obtain each assign-

ment. If we use a SAT solver inside DPB in combination with some variant

of Tseitin encoding [Tse83], then we can directly evaluate the assignments

to the auxiliary Tseitin variables of each term resp. formula.

Our decision procedure DPA decides satisfiability modulo TA ∪ TB. The

signature of TA is augmented with the signature of TB and the combined

theory TA∪TB includes the axioms of TA and TB. Array variables and writes

are terms of sort Array . They have sets of indices and values of sort Base1

Our decision procedure takes a (ΣA ∪ ΣB)-formula φ as input and decides

satisfiability. If it is satisfiable, then our decision procedure provides an

A-model. In contrast to B-models, A-models additionally provide concrete

assignments to terms of sort Array .

2.4 Preprocessing

We apply the following two preprocessing steps to the input formula φ. We

assume that φ is represented as Directed Acyclic Graph (DAG) with struc-

tural hashing enabled, i.e. syntactically identical sub-formulas and sub-terms

are shared. Furthermore, we assume that inequality is represented as com-

bination of equality and negation, i.e. a 6= b is represented as ¬(a = b).

1. For each equality a = c ∈ φ between terms of sort Array , we introduce

a fresh variable λ of sort Base and two virtual reads read(a, λ) and

1In principle, the sort of indices may differ from the sort of values. However, like most
decision procedure descriptions, e.g. [SBDL01], we assume that the sorts are the same to
simplify presentation and proofs. It is straightforward to generalize our decision procedure
to support multiple sorts.

14 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

read(c, λ). Then, we add the following top-level constraint:

a 6= c → ∃λ. read(a, λ) 6= read(c, λ)

2. For each write(a, i, e) ∈ φ, we add the following top-level constraint:

read(write(a, i, e), i) = e

These steps add additional top-level constraints c1 . . . cn to φ to the resulting

formula π. To be more precise, π is defined as follows:

π := φ ∧
n

∧

i=1

ci

The idea of preprocessing step 1 is that virtual reads are used as witness

for array inequality. If a 6= b, then it must be possible to find an index λ at

which the arrays contain different values. A similar usage of λ can be found

in [BM07], and as k in rule ext [SBDL01].

The idea of preprocessing step 2 is that additional reads are introduced

to enforce consistency on write values. This preprocessing step simplifies

our presentation and proofs as we can focus on reads and do not have to

explicitly treat write values. In contrast to preprocessing step 1, we do not

expect that step 2 is performed in real implementations. In section 2.11.4 we

discuss how this preprocessing step can be avoided.

Proposition 2.4.1. φ and π are equisatisfiable.

Proof. We show that each constraint c added by a preprocessing step is TA-

valid: TA |= c. Therefore, conjoining these constraints to φ does not affect

satisfiability.

Let c be an instance of preprocessing step 1. Axiom (A4′) asserts c. Thus,

TA |= c. Let c be an instance of preprocessing step 2. Axiom (A2) asserts c.

Thus, TA |= c.

2.5. FORMULA ABSTRACTION 15

2.4.1 If-Then-Else on Arrays

Typically, modern SMT solvers support an if-then-else on terms of sort Array :

cond(c, a, b), where c is a boolean condition. We do not explicitly treat

this feature here to simplify our presentation. In principle, cond(c, a, b) can

always be replaced by a fresh variable d of sort Array , and the following

constraint:

c → d = a ∧ ¬c → d = b

This preprocessing step must be performed before preprocessing step 1 and

2. In principle, our approach supports a direct integration of if-then-else on

terms of sort Array without rewriting it up front [BB08b].

2.5 Formula Abstraction

In the following, we consider a partial formula abstraction function α. Our

formula abstraction is similar to the abstraction in the lazy SMT approach,

however we do not generate a pure propositional skeleton. We generate

a TB skeleton as formula abstraction. Similar to STP [Gan07, GD07], we

replace reads by fresh variables. To be precise, our approach introduces

abstraction variables of sort Base, and propositional abstraction variables to

handle extensionality. The formula abstraction is applied after preprocessing.

Let π be the result of preprocessing a (ΣA∪ΣB)-formula φ. Analogously to

φ, we assume that π is represented as DAG with structural hashing enabled.

We also assume that inequality is represented as combination of equality and

negation, i.e. a 6= b is represented as ¬(a = b). The abstraction function α

recurses down the structure of π and builds the over-approximation α(π).

For terms of sort Array the result of applying α is undefined. The ab-

straction α maps:

1. Each read read(a, i) to a fresh abstraction variable of sort Base.

2. Each equality a = b between terms of sort Array to a fresh propositional

abstraction variable.

16 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

3. Each term f(t1, . . . , tm) of sort Base and each formula

to f(α(t1), . . . , α(tm)).

4. Each (non-array) variable and symbolic constant to itself.

Now, assume that we start from the boolean part of π, then terms of sort

Array can only be reached by passing reads, and equalities between terms of

sort Array . The abstraction function α replaces exactly these terms by fresh

variables, hence the underlying terms of sort Array are no longer reachable

in α(π).

Proposition 2.5.1. α(π) is an over-approximating abstraction of π.

Proof. First, we show that whenever there exists a model σ for π, then we

can construct a model σα for α(π). We assume that σ not only returns

satisfying assignments to variables, but also consistent assignments to terms

and formulas in π. Given σ, σα can be constructed as follows: For each read

r in π define σα(α(r)) := σ(r). For each equality e between terms of sort

Array in π define σα(α(e)) := σ(e). For all other terms and formulas x in

α(π), define σα(x) := σ(x). Obviously, σα satisfies α(π) as the abstraction

variables are fresh and unconstrained.

Second, we show that whenever there exists a model σα for α(π), we

can not always construct a model σ for π. Consider the following example.

Assume that our theory TB is the quantifier-free theory of Presburger arith-

metic, i.e. Base represents the natural numbers. Furthermore, assume that

i, λ and e are terms of sort Base, and a is an array with indices and values

of sort Base. Let w be write(a, i, e). Consider the following formula π1:

w = a ∧ read(a, i) 6= e ∧ (w 6= a→ read(w, λ) 6= read(a, λ))∧read(w, i) = e

Let q be α(w = a), s be α(read(a, i)), t be α(read(w, λ)), u be α(read(a, λ)),

and v be α(read(w, i)). The abstraction α(π1) results in the following for-

mula:

q ∧ s 6= e ∧ (¬q → t 6= u) ∧ v = e

Obviously, we can find a model σα. However, π1 is unsatisfiable as w = a,

read(a, i) 6= e, and read(w, i) = e can not all be assigned to ⊤.

2.6. DECISION PROCEDURE 17

As α(π) is an over-approximating abstraction of π, α(π) may have addi-

tional models that are spurious in π. Therefore, we have to find a way to

eliminate spurious models, which we will discuss in the next sections.

2.6 Decision Procedure

Our decision procedure DPA uses an abstraction refinement loop similar

to [BDS02, dMR02, FJS03]. However, we use a TB skeleton as formula ab-

straction. Our formula abstraction introduces abstraction variables of sort

Base. Boolean abstraction variables are only introduced to handle the ex-

tensional case.

In our decision procedure the over-approximated formula is solved by

the underlying decision procedure DPB. If we find a spurious model, then

we add a lemma to refine the abstraction. In each iteration the algorithm

may terminate concluding unsatisfiability, or satisfiability if the model is not

spurious. However, if the model is spurious, inconsistent assignments are

ruled out, and the procedure continues with the next iteration. An overview

of DPA is shown in Fig. 2.1 and Fig. 2.2.

First, we preprocess φ and initialize our formula refinement ξ to ⊤. In

each loop iteration, we take the abstraction α(π), conjoin it with our formula

refinement, and run our decision procedure DPB. If DPB concludes that α(π)

is unsatisfiable, then we can conclude that π is unsatisfiable as α is an over-

approximating abstraction. As φ and π are equisatisfiable, we can finally

conclude that the original formula φ is unsatisfiable.

However, if DPB concludes that α(π) ∧ ξ is satisfiable, it returns a satis-

fying assignment σ, i.e. a B-model, which can be used to build an A-model

of π. As we have used an over-approximating abstraction, we have to check

if this is a spurious model. We run our consistency checker on the prepro-

cessed formula π. The consistency checker checks whether the B-model can

be extended to a valid A-model or not. If the consistency checker does not

find a conflict, then we can conclude that π is satisfiable. Again, as π and φ

are equisatisfiable, we can finally conclude that φ is satisfiable. However, if

the current assignment σ is invalid with respect to the extensional theory of

18 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

AbstractPreprocess Refine

SAT?

NO

Spurious?

NO

YES

YES

α(π)πφ ξ

φ is unsatisfiable φ is satisfiable

DPB

α(π) ∧ ξ

Figure 2.1: Overview of DPA.

arrays, then we generate a lemma as formula refinement and continue with

the next iteration.

2.7 Consistency Checking

In the following, we discuss the consistency checking algorithm, denoted by

consistent in DPA, and lemma generation, denoted by lemma in DPA. A

more precise description of how the lemmas are generated is part of the

soundness proof in section 2.8.

The consistency checker takes π and a concrete B-model σ for α(π) and

checks whether it can be extended to a valid A-model or not. In principle, the

algorithm is based on read propagation and congruence checking of reads. In

the first phase, the consistency checker propagates reads to other terms of sort

Array . After the propagation has finished, the consistency checker iterates

over all terms of sort Array in π and checks whether reads are congruent or

not. If they are not, a lemma is generated to refine the abstraction.

2.7. CONSISTENCY CHECKING 19

procedure DPA (φ)

π ← preprocess (φ)

ξ ← ⊤

loop

(r, σ)← DPB (α(π) ∧ ξ)

if (r = unsatisfiable)

return unsatisfiable

if (consistent (π, σ))

return satisfiable

ξ ← ξ ∧ α(lemma(π, σ))

Figure 2.2: Algorithmic overview of DPA.

2.7.1 Reads

First, we consider the case where reads may only be applied to array variables.

Moreover, we assume that we have no writes and also no equalities between

arrays. In this case no read propagation is necessary. The consistency checker

iterates over all array variables and checks if congruence on reads is violated.

Axiom (A1) is violated if and only if:

σ(α(i)) = σ(α(j)) ∧ σ(α(read(a, i))) 6= σ(α(read(a, j)))

In this case we generate the following lemma:

i = j ⇒ read(a, i) = read(a, j)

In principle, this is just a lazy variant of Ackermann expansion [Ack54].

In particular, Ackermann expansion is an interesting topic for SMT as it

plays an important role in deciding formulas in the theory of equality and

uninterpreted functions. For example, see [BCF+06a].

20 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

1 21 2

eq

1
2

eq

1
2

not

and

12

a ij

r1r2

eq

1
2

eq

1 2

not

and

1 2

i j

α(r1) α(r2)

Figure 2.3: Example 1. Formula φ (resp. π) with array a and two reads r1
and r2 is shown left. The label and means conjunction, not means negation,
and eq means equality. Edge numbers denote the ordering of the operands,
e.g. r1 is a read function where the first operand is a, and the second operand
is i. The abstraction α(π) is shown right.

2.7. CONSISTENCY CHECKING 21

Example 1.

Let φ be as shown in Fig. 2.3. The preprocessed formula π is identical to

φ as no preprocessing steps are necessary.

We consider the set of reads {r1, r2}. We run DPB on α(π) and

DPB generates a model σ such that σ(i) = σ(j) and σ(α(r1)) 6= σ(α(r2)).

We find an inconsistency as σ(i) = σ(j), but σ(α(r1)) 6= σ(α(r2)), and

generate the following lemma:

i = j ⇒ r1 = r2

Note that in this example α(i) = i and α(j) = j, but this is not the general

case. Read values may also be used as read indices. Furthermore, note that

our generated lemmas are in TA. However, in order to refine our abstraction

α(π), we apply the abstraction function α to each generated lemma which is

not shown in our examples.

2.7.2 Writes

If we additionally consider writes in φ resp. π, then a term of sort Array is

either an array variable or a write. Note that it is possible to nest writes. We

introduce a mapping ρ which maps terms of sort Array to a set of reads. Note

that these reads are drawn from those appearing in π. In the first phase, the

consistency checker initializes ρ for each term of sort Array . Then, it iterates

over all writes and propagates reads if necessary:

I. Map each b to its set of reads ρ(b),

initialized as ρ(b) = {read(b, i) in π for some i}.

D. For each read(b, i) ∈ ρ(write(a, j, e)):

if σ(α(i)) 6= σ(α(j)), add read(b, i) to ρ(a).

22 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

Repeat rule D until fix-point is reached, i.e. ρ does not change anymore.

Fix-point computation of ρ can be implemented as post-order traversal on

the array expression sub-graph starting at ”top-level“ writes, i.e. writes that

are not overwritten by other writes. Note that read propagation in rule D

is the sense of copying without removing, i.e. if we propagate a read r from

source s to destination d it actually means that we copy r from ρ(s) to ρ(d).

In the second phase we check congruence:

C. For each pair read(b, i), read(c, k) in ρ(a):

check adapted congruence axiom.

In rule C the original array congruence axiom (A1) can not be applied as

ρ(a) may contain propagated reads that do not read on a directly. Therefore,

we have to adapt (A1). The adapted axiom is violated if and only if:

σ(α(i)) = σ(α(k)) ∧ σ(α(read(b, i))) 6= σ(α(read(c, k)))

We collect all indices ji
1 . . . j

i
m that have been used as j inD while propagating

read(b, i). Analogously, we collect all indices jk
1 . . . j

k
n that have been used as

j in D while propagating read(c, k). Then, we generate the following lemma:

i = k ∧
m
∧

l=1

i 6= ji
l ∧

n
∧

l=1

k 6= jk
l ⇒ read(b, i) = read(c, k)

The first big conjunction represents that σ(α(i)) is different from all the

assignments to the write indices on the propagation path of read(b, i). Anal-

ogously, the second conjunction represents that σ(α(k)) is different from all

the assignments to the write indices on the propagation path of read(c, k).

The resulting lemma ensures that the current inconsistency can not occur

anymore in future refinement iterations. Either the propagation paths change

or the reads are congruent.

In this section we keep the description of our lemmas rather informal. A

more precise description is part of the soundness proof in section 2.8.

2.7. CONSISTENCY CHECKING 23

12 3

23
1 1 2 3

2
1 2 1

eq

1 2

not

a

i k

j1

j2 j3

e1

e2 e3w1

w2
w3

r1 r2

Figure 2.4: Formula φ for examples 2 and 3. It has one array variable a, two
reads r1 and r2, and three writes w1 to w3.

24 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

1
2

3

2 31 1
2 32 1

2
1 212

1
2 1

eq

2
1

eq

21

eq

21

eq

1 2

notand

1
2

and

12

and

1 2

a

i k

j1

j2 j3

e1

e2 e3w1

w2 w3r3

r4 r5r1 r2

Figure 2.5: Formula π for examples 2 and 3. Reads r3 to r5 have been added
by preprocessing step 2.

2.7. CONSISTENCY CHECKING 25

eq

1
2

eq

1 2

eq

1 2

not eq

1 2

and
1

2

and

1 2

and

1
2

α(r1) α(r2)

α(r5)α(r4)α(r3) e3e2e1

Figure 2.6: Formula α(π) for examples 2 and 3. The read indices i and k,
and the write indices j1 to j3 are not shown as they are not reachable from
the root of α(π). Initially, they are unconstrained and DPB can assign them
arbitrarily.

26 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

Example 2.

Let φ be as shown in Fig. 2.4. The preprocessed formula π is shown in

Fig. 2.5, and α(π) is shown in Fig. 2.6.

We run DPB on α(π) and assume that it generates a model σ such

that σ(i) = σ(k), σ(i) 6= σ(j2), σ(i) 6= σ(j1), σ(k) 6= σ(j3), i.e. the

assignments to the write indices are different from the assignments to the

read indices i and k. Furthermore, σ(α(r1)) 6= σ(α(r2)). Note that if DPB

finds a model, then σ(α(r3)) = σ(e1), σ(α(r4)) = σ(e2), σ(α(r5)) = σ(e3),

and σ(α(r1)) 6= σ(α(r2)) has to hold.

Initially, ρ(a) = ∅, ρ(w1) = {r3}, ρ(w2) = {r1, r4}, and ρ(w3) = {r2, r5},

Read r1 is propagated down to a as σ(i) 6= σ(j2) and σ(i) 6= σ(j1).

Analogously, read r2 is propagated down to a as σ(k) 6= σ(j3). Therefore,

ρ(a) = {r1, r2}, ρ(w1) = {r1, r3}, ρ(w2} = {r1, r4}, and ρ(w3) = {r2, r5},

We check ρ(a), find an inconsistency according to rule C as σ(i) = σ(k),

but σ(α(r1)) 6= σ(α(r2)), and generate the following lemma:

i = k ∧ i 6= j2 ∧ i 6= j1 ∧ k 6= j3 ⇒ r1 = r2

2.7. CONSISTENCY CHECKING 27

Example 3.

Again, let φ be as shown in Fig. 2.4. The preprocessed formula π is shown

in Fig. 2.5, and α(π) is shown in Fig. 2.6.

We run DPB on α(π) and assume that DPB generates a model σ

such that σ(i) 6= σ(j2), σ(i) = σ(j1), σ(α(r1)) 6= σ(e1), σ(k) = σ(j3), and

σ(α(r2)) = σ(α(r5)). Again, note that σ(α(r3)) = σ(e1), σ(α(r4)) = σ(e2),

σ(α(r5)) = σ(e3), and σ(α(r1)) 6= σ(α(r2)).

Initially, ρ(a) = ∅, ρ(w1) = {r3}, ρ(w2) = {r1, r4}, and ρ(w3) = {r2, r5},

We propagate r1 down to w1 as σ(i) 6= σ(j2). Therefore, we update ρ(w1)

to {r1, r3}. We check ρ(w1), find an inconsistency according to rule C as

σ(i) = σ(j1), but σ(α(r1)) 6= σ(α(r3)), and generate the following lemma:

i = j1 ∧ i 6= j2 ⇒ r1 = r3

2.7.3 Equalities between Arrays

We also consider equalities between terms of sort Array . In particular, we

add rules R and L to propagate reads over equalities between terms of sort

Array . Furthermore, we add rule U to propagate reads upwards.

U . For each read(b, i) ∈ ρ(a):

if σ(i) 6= σ(j), add read(b, i) to ρ(write(a, j, e)).

R. For each a = c, σ(α(a = c)) = ⊤:

for each read(b, i) ∈ ρ(a):

add read(b, i) to ρ(c).

L. For each a = c, σ(α(a = c)) = ⊤:

for each read(b, i) ∈ ρ(c):

add read(b, i) to ρ(a).

28 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

Rules R and L represent that we also have to propagate reads over equalities

between terms of sort Array to ensure extensional consistency, but only if

DPB assigns them to ⊤. Rule U is responsible to propagate reads upwards,

but only if the assignment to the write index is different from the assignment

to the read index. Note, write(a, j, e) must appear in π.

In order to implement our consistency checking algorithm, we need a real

fix-point computation for ρ. This can be implemented by a working queue

that manages future read propagations. Simple post-order traversal on the

array expression sub-graph of π is no longer sufficient as reads are not only

propagated downwards, but also upwards, and between equalities on terms

of sort Array .

As soon as we consider extensionality, propagating reads upwards is nec-

essary. Consider the following example, which is also shown in Fig. 2.11:

write(a, i, e1) = write(b, j, e2) ∧ i 6= k ∧ j 6= k ∧ read(a, k) 6= read(b, k)

The write indices i and j are respectively different from the read index k.

Therefore, position k at array a is not overwritten with e1. Analogously,

position k at array b is not overwritten with e2. However, in combination

with i 6= k and j 6= k, the equality between the two writes enforces that

the two reads have to be extensionally congruent. Therefore, this formula is

clearly unsatisfiable.

In order to detect extensionally inconsistent reads, it is necessary to prop-

agate them to the same term of sort Array . Rule U enforces extensional con-

sistency in combination with rules L and R. Reads at array positions that

are not overwritten are propagated upwards to writes, and between equali-

ties on terms of sort Array . In this way, extensionally inconsistent reads are

propagated to the same term of sort Array , and rule C can detect the incon-

sistency. This is demonstrated in example 5. Note that upward propagation

respects (A3). We propagate reads upwards only if the assignments to the

read indices differ from the assignment to the write indices, i.e. the values

are not overwritten.

2.7. CONSISTENCY CHECKING 29

12 1
2

eq

1 2

eq

1 2

and

2 1

eq

1
2

or

1 2

a bi j

r1 r2

Figure 2.7: Extensional formula φ for example 4.

Lemmas generated upon inconsistency detection are extended as follows.

Lemmas involving rule U are extended analogously to rule D. Lemmas in-

volving rules L and R are extended in the following way. We additionally

collect all array equalities xi
1, . . . x

i
q used in rule R or L while propagating

read(b, i). Analogously, we additionally collect all array equalities xk
1, . . . x

k
r

used in rule R or L while propagating read(c, k). The lemma is extended in

the following way:

. . . ∧

q
∧

l=1

xi
l ∧

r
∧

l=1

xk
l ⇒ read(b, i) = read(c, k)

The complete set of our rules implementing our consistency checking algo-

rithm based on read propagation is summarized in Fig. 2.10.

30 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

1212

eq

12

eq

12

and

2 1

eq

12

or

1
2

1
2

1
2

eq

12

implies

2 1

and

1 2

abij

r1r2

λ

r3r4

Figure 2.8: Formula π for example 4. The right part of the formula has been
added by preprocessing step 1. Here we use r3 = r4 → a = b, which is
obviously equal to a 6= b → r3 6= r4. Note that r3 and r4 are virtual reads
that do not occur in the original formula φ.

2.7. CONSISTENCY CHECKING 31

eq

1
2

eq

1 2

and

1 2

or

21

eq

1 2

implies

2 1

and

1 2

α(r3) α(r4)

α(r1) α(r2)i j

α(a = b)

Figure 2.9: Formula α(π) for example 4.

Example 4.

Let φ be as in Fig. 2.7. The preprocessed formula π is shown in Fig. 2.8,

and α(π) is shown in Fig. 2.9.

We run DPB on α(π) and assume that DPB generates a model σ

such that σ(i) = σ(j), σ(α(a = b)) = ⊤, and σ(α(r1)) 6= σ(α(r2)).

Initially, ρ(a) = {r1, r3} and ρ(b) = {r2, r4}. We propagate r1 and

r3 from a to b as σ(α(a = b)) = ⊤ and therefore extensional consistency

has to be enforced. Analogously, we propagate r2 and r4 from b to

a. Therefore, ρ(a) = ρ(b) = {r1, r2, r3, r4}. We check ρ(a), find an

inconsistency according to rule C as σ(i) = σ(j), but σ(α(r1)) 6= σ(α(r2)).

We generate the following lemma:

i = j ∧ a = b ⇒ r1 = r2

32 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

I. Map each b to its set of reads ρ(b),
initialized as ρ(b) = {read(b, i) in π}.

D. For each read(b, i) ∈ ρ(write(a, j, e)):
if σ(α(i)) 6= σ(α(j)), add read(b, i) to ρ(a).

U . For each read(b, i) ∈ ρ(a):
if σ(α(i)) 6= σ(α(j)), add read(b, i) to ρ(write(a, j, e)).

R. For each a = c, σ(α(a = c)) = ⊤:
for each read(b, i) ∈ ρ(a):
add read(b, i) to ρ(c).

L. For each a = c, σ(α(a = c)) = ⊤:
for each read(b, i) ∈ ρ(c):
add read(b, i) to ρ(a).

C. For each pair read(b, i), read(c, k) in ρ(a):
check adapted congruence axiom.

Figure 2.10: Final consistency checking algorithm. Rule I initializes ρ. For
each term b of sort Array , i.e. array variables and writes, ρ(b) is initialized
as set of reads that directly read on b. Rules D resp. U perform downward
resp. upward propagation. Rules L resp. R perform left resp. right propaga-
tion over equalities between terms of sort Array . Rules D, U , R and L are
repeated until fix-point is reached, i.e. ρ does not change anymore. However,
in principle, consistency checking rule C may also be interleaved with D, U ,
R and L. This means that consistency checking is performed on-the-fly.

2.7. CONSISTENCY CHECKING 33

Example 5.

Let φ be as shown in Fig. 2.11. The preprocessed formula π is shown in

Fig. 2.12, and α(π) is shown in Fig. 2.13.

We run DPB on α(π) and assume that DPB generates a model σ such that

σ(k) 6= σ(i), σ(k) 6= σ(j), σ(α(r1)) 6= σ(α(r2)), and σ(α(w1 = w2)) = ⊤.

Furthermore, σ(α(r5)) = σ(e1), and σ(α(r6)) = σ(e2).

We perform on-the-fly consistency checking in depth-first search

manner. Initially, ρ(a) = {r1}, ρ(b) = {r2}, ρ(w1) = {r3, r5}, and

ρ(w2) = {r4, r6}. We propagate r1 up to w1 as σ(k) 6= σ(i), i.e. the value

has not been overwritten by w1. We update ρ(w1) to {r1, r3, r5}. With

respect to σ, we assume that the reads in ρ(w1) do not violate congruence,

i.e. on-the-fly consistency checking rule C does not find a conflict in ρ(w1).

To enforce extensional consistency, we propagate r1 from w1 to w2

as σ(α(w1 = w2)) = ⊤. We update ρ(w2) to {r1, r4, r6}. Again, we

assume that the reads in ρ(w2) do not violate congruence.

Then, we propagate r1 from w2 down to b as σ(k) 6= σ(j). We up-

date ρ(b) to {r1, r2}. We check ρ(b), find an inconsistency according to

rule C as r1 and r2 read on the same index, but read a different value.

We generate the following lemma:

k 6= i ∧ k 6= j ∧ w1 = w2 ⇒ r1 = r2

34 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

Example 6.

Again, let φ be as shown in Fig. 2.11. The preprocessed formula π is

shown in Fig. 2.12, and α(π) is shown in Fig. 2.13.

We run DPB on α(π) and assume that DPB generates a model σ

such that σ(i) = σ(j), σ(e1) 6= σ(e2), and σ(α(w1 = w2)) = ⊤. Further-

more, σ(r5) = σ(e1), σ(r6) = σ(e2), and σ(α(r1)) 6= σ(α(r2)).

Again, we perform on-the-fly consistency checking in depth-first search

manner. Initially, ρ(a) = {r1}, ρ(b) = {r2}, ρ(w1) = {r3, r5}, and

ρ(w2) = {r4, r6}. We propagate r5 from w1 to w2 as σ(α(w1 = w2)) = ⊤.

We update ρ(w2) to {r4, r5, r6}. We check ρ(w2) and find an inconsistency

according to rule C as σ(i) = σ(j), but σ(r5) 6= σ(r6). We generate the

following lemma:

i = j ∧ w1 = w2 ⇒ r5 = r6

2.8 Soundness

We show that our approach is sound, i.e. whenever DPA concludes that φ

is unsatisfiable, then φ is unsatisfiable modulo TA ∪ TB. In particular, we

show that each lemma l generated upon inconsistency detection is TA-valid:

TA |= l.

First of all, we introduce a partial mapping χ(a, r), which maps a term of

sort Array and a read r = read(b, i) of sort Base to a propagation condition

χ. If the adapted congruence axiom is violated (rule C), then the lemma

is obtained by combining propagation conditions of the inconsistent reads.

Thus, this section also provides a more formal definition of how lemmas are

constructed in our approach.

Initially, in rule I, χ(a, read(a, i)) := ⊤ for each read in ρ(a). Otherwise,

it is undefined. Whenever we propagate a read r from source s to destination

2.8. SOUNDNESS 35

1
2

3 1 2 31 2 12

eq

1 2

not

eq

1 2

and

12

a bi e1 j e2k

w1 w2r1 r2

Figure 2.11: Extensional formula φ for examples 5 and 6.

d under the condition ∆, then we set the propagation condition χ(d, r) to

χ(s, r) ∧ ∆. A propagation occurs only if ρ(d, r) is undefined, i.e. the read

has not been propagated to d before. For each rule in Fig. 2.10, Tab. 2.1

shows how χ is updated while propagating reads.

Lemma 2.8.1. TA |= χ(d, read(b, i))⇒ read(b, i) = read(d, i)

Proof. The proof is by induction over the updates to χ resp. ρ.

I: trivially holds: TA |= ⊤ ⇒ read(b, i) = read(b, i).

Rule s d ∆
I b b ⊤
D write(a, j, e) a i 6= j

U a write(a, j, e) i 6= j

R a c a = c

L c a a = c

Table 2.1: Updates for χ while propagating read(b, i) from source s to des-
tination d under propagation condition ∆. Rule I is a special case used for
initialization.

36 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

12
3 1

2 31
2 1

2

eq

1
2

noteq

1 2

1 2
12

eq

1 2

implies

21

and

12

and

1 2

and

12

2 1

eq

2 1

21

eq

21

and

12

and

1 2

and

1 2

a bie1 j e2k

w1 w2r1 r2λ

r3 r4r5 r6

Figure 2.12: Formula π for examples 5 and 6. The two virtual reads r3 and
r4 have been introduced by preprocessing step 1. Reads r5 and r6 have been
introduced by preprocessing step 2 to enforce consistency on write values.

2.8. SOUNDNESS 37

eq

1 2

not eq

12

implies

2 1

and

1 2

and

12

and

1 2

eq

2
1

eq

2 1

and

12

and

1 2

and

1 2

e1 e2

α(r1) α(r2)

α(w1 = w2)

α(r3)α(r4)

α(r5) α(r6)

Figure 2.13: Formula α(π) for examples 5 and 6.

38 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

D: Let ψ be χ(write(a, j, e), read(b, i)) and ∆ be i 6= j. From the induction

invariant we know TA |= ψ ⇒ read(write(a, j, e), i) = read(b, i). From

(A2) we obtain ∆ ⇒ read(write(a, j, e), i) = read(a, i). Therefore,

we can conclude TA |= ψ ∧ ∆ ⇒ read(a, i) = read(write(a, j, e), i) =

read(b, i).

U : Let ψ be χ(a, read(b, i)) and ∆ be i 6= j. From the induction invariant

we know TA |= ψ ⇒ read(a, i) = read(b, i). From (A2) we obtain

∆ ⇒ read(a, i) = read(write(a, j, e), i). Therefore, we can conclude

TA |= ψ ∧∆⇒ read(a, i) = read(write(a, j, e), i) = read(b, i).

R: Let ψ be χ(a, read(b, i)) and ∆ be a = c. From the induction invariant

we know TA |= ψ ⇒ read(a, i) = read(b, i). From (A4) we obtain that

∆⇒ read(a, i) = read(c, i). Therefore, we can conclude TA |= ψ∧∆⇒

read(a, i) = read(b, i) = read(c, i).

L: can be shown analogously to R.

Proposition 2.8.1. TA |= i = k ∧ χ(a, read(b, i)) ∧ χ(a, read(c, k)) ⇒

read(b, i) = read(c, k)

Proof. Let ψb be χ(a, read(b, i)) and ψc be χ(a, read(c, k)). From lemma 2.8.1

we obtain TA |= ψb ⇒ read(b, i) = read(a, i) resp. TA |= ψc ⇒ read(c, k) =

read(a, k). From (A1) we obtain that i = k ⇒ read(a, i) = read(a, k).

Therefore, TA |= i = k ∧ ψ1 ∧ ψ2 ⇒ read(b, i) = read(a, i) = read(a, k) =

read(c, k) follows.

Thus, each lemma l is TA-valid: TA |= l. Therefore, refining the formula

abstraction with these lemmas does not affect satisfiability. Now, we can

prove that our approach is sound:

Proposition 2.8.2. If DPA(φ) = unsatisfiable, then φ is unsatisfiable

modulo TA ∪ TB.

2.9. COMPLETENESS 39

Proof. From proposition 2.4.1 we obtain that φ is equisatisfiable to π, and

from proposition 2.5.1 we know that α(π) is an over-approximation of π.

From proposition 2.8.1 we obtain that each lemma added as formula refine-

ment does not affect satisfiability as it is TA-valid. Thus, if DPB concludes

that α(π) is unsatisfiable, then it is sound that our overall decision procedure

DPA concludes that φ is unsatisfiable.

2.9 Completeness

In order to show completeness, we define models for terms of sort Array

and show that they respect semantics of TA. In particular, we show that

whenever DPB finds a B-model for α(π) and the consistency checker can not

find an inconsistency, the B-model in combination with ρ can be canonically

extended to an A-model for π.2 For the rest of this section we assume that

DPB found a B-model and consistency checking terminated without any

violations of rule C.

First, we generalize σ for terms of sort Base. Let t be a term of sort Base:

σ(t) = σ(α(t))

This means whenever we want the satisfying assignment to a term of sort

Base, we obtain the assignment to its abstraction. Recall that for terms of

sort Base, only reads are mapped to abstraction variables.

Now, we define models for terms of sort Array , which we also call σ in

the following. We need exactly one arbitrary but fixed constant value of sort

Base. In the following, we denote this value by 0. Let a be an arbitrary term

of sort Array , and let ν be an arbitrary constant value of sort Base:

σ(a)(ν) =

{

σ(read(b, i)) if exists read(b, i) ∈ ρ(a) with σ(i) = ν

0 otherwise

This means that if we want to read the concrete value of a term a of sort

2We require that σ is actually defined on exactly all sub-terms of α(π). Then, σ can
be extended to all sub-terms of π and φ. For other terms it is undefined.

40 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

Array at index ν, then we have to examine ρ(a). If there is a read read(b, i)

where σ(i) = ν, then σ(a)(ν) is σ(read(b, i)). Otherwise, the result is our

constant value 0. The constant value 0 is used as default value for array

elements.

First, we show that our definition of array models is well-defined. Let a

be a term of sort Array , and let ν be a constant of sort Base:

Proposition 2.9.1. Array model σ is well-defined.

Proof. The proof is by cases. First, assume that there exists read(b, i) ∈

ρ(a) such that σ(i) = ν. Let read(c, j) be another read ∈ ρ(a) such that

σ(i) = σ(j) = ν, then σ(read(b, i)) = σ(read(c, j)). Otherwise, the adapted

congruence would be violated. Thus, σ(a)(ν) = σ(read(b, i)) = σ(read(c, j)),

which is well-defined.

Now, assume that there does not exist a read(b, i) ∈ ρ(a) such that σ(i) =

ν. Then, σ(a)(ν) = 0 which is well-defined.

Proposition 2.9.2. Array model σ respects read semantics of TA.

Proof. Let a be a term of sort Array , and let i be a term of sort Base. Let

read(a, i) occur in π, then rule I guarantees read(a, i) ∈ ρ(a). By definition,

σ(a)(σ(i)) = σ(read(a, i)) and thus σ respects read semantics on arrays.

Proposition 2.9.3. Array model σ respects write semantics of TA.

Proof. In particular, we show that σ respects write semantics on arrays. Let

a be a term of sort Array , and let i, j and e be terms of sort Base. Let

write(a, i, e) occur in φ resp. π. Let ν be a constant value of sort Base.

Again, the proof is by cases.

First, assume that σ(i) = ν. We know that preprocessing step 2 adds the

top level constraint read(write(a, i, e), i) = e. Therefore, read(write(a, i, e), i) ∈

ρ(write(a, i, e)). Since σ is aB-model, σ(read(write(a, i, e), i)) = σ(e). There-

fore, σ(write(a, i, e))(ν) = σ(read(write(a, i, e), i)) = σ(e) which obviously

respects update semantics of writes.

Second, assume that σ(i) 6= ν. Assume that there exists a read(b, j) with

σ(j) = ν in ρ(write(a, i, e)). As σ(j) = ν and σ(i) 6= ν, rule D guaran-

tees that read(b, j) ∈ ρ(a). Therefore, σ(write(a, i, e))(ν) = σ(read(b, j)) =

2.9. COMPLETENESS 41

σ(a)(ν). Analogously, in addition to σ(i) 6= ν, assume that there exists a

read(b, j) with σ(j) = ν in ρ(a). As σ(j) = ν and σ(i) 6= ν, rule U guaran-

tees that read(b, j) ∈ ρ(write(a, i, e)). Therefore, σ(a)(ν) = σ(read(b, j)) =

σ(write(a, i, e))(ν).

Finally, assume that there does not exist a read(b, j) with σ(j) = ν in

ρ(write(a, i, e)) resp. ρ(a). Then, σ(write(a, i, e))(ν) = 0 = σ(a)(ν).

Proposition 2.9.4. Array model σ respects extensional semantics of TA.

Proof. Let a and c be terms of sort Array with a = c in φ. We have to show:

σ(a = c) ⇔ ∀ν (σ(a)(ν) = σ(c)(ν))

The proof is by cases. First, we show:

σ(a 6= c) ⇒ ∃ν (σ(a)(ν) 6= σ(c)(ν))

For each equality a = c between terms of sort Array , preprocessing step

1 adds the constraint a 6= c ⇒ read(a, λ) 6= read(c, λ). If DPB finds a

model, then there must be an assignment to λ such that σ(read(a, λ)) 6=

σ(read(c, λ)), and therefore σ(a)(ν) 6= σ(c)(ν) with ν = σ(λ).

Now, we show:

σ(a = c) ⇒ ∀ν (σ(a)(ν) = σ(c)(ν))

Assume that there exists a read(b, j) with σ(j) = ν in ρ(a). Rule R

guarantees that if σ(a = c) = ⊤, then read(b, j) is also in ρ(c). Therefore,

σ(a)(ν) = σ(read(b, j)) = σ(c)(ν).

Analogously, assume that there exists a read(b, j) with σ(j) = ν in ρ(c).

Rule L guarantees that if σ(a = c) = ⊤, then read(b, j) is also in ρ(a).

Therefore, σ(c)(ν) = σ(read(b, j)) = σ(a)(ν).

Finally, assume that there does not exist a read(b, j) in ρ(a) resp. ρ(c).

Then, σ(a)(ν) = 0 = σ(c)(ν).

Proposition 2.9.5. DPA is terminating.

42 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

Proof. In order to prove overall termination we show that only finitely many

lemmas can be generated, and each loop iteration rules out at least one

lemma from being regenerated. In the proof of proposition 2.10.1 we show

that the number of lemmas is bounded, i.e. only finitely many lemmas can

be generated.

Added lemmas can not be regenerated as for each lemma α(lemma(π, σ))

added in the inner loop, σ(α(lemma(π, σ))) = ⊥. In future calls to the

decision procedure DPB, returning a satisfying assignment, this lemma has

to be satisfied, and can thus not be regenerated.

Now we are able to prove that our approach is complete.

Proposition 2.9.6. If φ is unsatisfiable modulo TA ∪ TB, then DPA(φ) =

unsatisfiable.

Proof. We prove the contrapositive. From proposition 2.9.2, 2.9.3 and 2.9.4

we obtain that if DPB finds a B-model σ for α(π) and the consistency checker

does not find a conflict, then this model can always be canonically extended

to an A-model of π. From proposition 2.4.1 we obtain that φ is equisatisfiable

to π, and obviously, σ is also a model of φ. Therefore, in combination with

proposition 2.9.5, which shows that DPA is terminating, our approach is

complete.

2.10 Complexity

The complexity of our approach depends both on the complexity of the con-

sistency checking algorithm and the complexity of our abstraction refinement,

i.e. the upper bound on number of lemmas that have to be generated. We

analyze both in the next two sub-sections.

2.10.1 Consistency Checking

The complexity of the consistency checking algorithm is quadratic in the

size of π, measured in the number of rule applications that update ρ. The

worst case occurs if each read is propagated to each term of sort Array .

2.10. COMPLEXITY 43

In the following, we assume consistency checking is performed on-the-fly,

i.e. we interleave consistency checking with read propagation. To be precise,

whenever we propagate a read to its next destination d, we check if there is

already a read in ρ(d) that has the same assignment to its index. If this is

the case, we immediately perform the consistency check.

Each rule application requires at most one update of ρ(d) and one check

according to rule C. One check is enough as each read in ρ(d) with the

same assignment to its index must have the same assignment to its read

value. Otherwise, the consistency checker would have found a conflict before.

Therefore, it is sufficient to compare the propagated read with only one

representative read. See section 2.11.2 for a more detailed discussion.

2.10.2 Upper Bound on Number of Lemmas

Proposition 2.10.1. The number of lemmas is bounded by O(n2 · 2n) with

n = |φ|.

Proof. Let r be the number of reads in φ, w be the number of writes in φ,

and q be the number of equalities between terms of sort Array in φ. Then,

π has s = r + w + 2q reads, and the same number of writes and equalities

between terms of sort Array .

By checking C on-the-fly in each update to ρ, we can make sure that prop-

agation paths do not overlap. Therefore, writes from which the indices stem

are all different. Therefore, each lemma consists of at most w comparisons

of read and write indices, at most q boolean literals, exactly one read/read

index comparison, and exactly one read/read value comparison. There are

exactly two read indices in each lemma. Finally, each array equality con-

tributes at most one literal. Therefore, the number of different lemmas is

bounded by

2q · 2w · s2 = 2q+w · s2 ≤ 2n · s2 = O(n2 · 2n)

using q + r + w ≤ n = |φ| and s = O(n).

Note that rules L resp. R add abstraction variables for equalities between

terms of sort Array to a lemma only if they have been assigned to ⊤ by DPB.

44 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

Therefore, they can never occur negatively. Either a boolean abstraction

variable occurs positively or not at all.

2.11 Implementation Details

We implemented DPA in our SMT solver Boolector [BB09a]. Boolector is an

efficient SMT solver for the quantifier-free theories of bit-vectors and arrays.

Furthermore, it may also be used as model checker for safety properties in

the context of bit-vectors and arrays [BBL08]. PicoSAT [Bie08] is used as

backend SAT solver in DPB.

Boolector entered the SMT competition SMT-COMP’08 [BDOS08] for

the first time. It participated in the quantifier-free theory of bit-vectors

QF BV, and in the quantifier-free theory of bit-vectors, arrays and uninter-

preted functions QF AUFBV, and won both. In QF AUFBV Boolector solved 16

formulas more than Z3.2, 64 more than the winner of 2007, Z3 0.1 [dMB08],

and 103 more than CVC3 [BT07] version 1.5 (2007). In the SMT compe-

tition [BDOS09] 2009, Boolector won again in QF AUFBV and achieved the

second place in QF BV.

2.11.1 Lemma Minimization

Often, lemmas constructed by our approach can be further minimized. In

general, there may be many different propagation paths that lead to a the-

ory inconsistency. Starting from the original arrays on which the reads are

applied, we respectively perform a breadth-first search to the array at which

the inconsistency has been detected. The breadth-first search guarantees

that we respectively select one of shortest propagation paths. In general,

this approach leads to stronger lemmas as the propagation conditions are

directly used in the premises.

Furthermore, sometimes the premise of a lemma may be even more re-

duced as some parts may be already subsumed by other parts. For example,

let r1 be read(write(a, j, e1), i1), and r2 be read(write(a, j, e2), i2). Consider

2.11. IMPLEMENTATION DETAILS 45

the following formula:

i1 6= j ∧ i2 6= j ∧ r1 6= r2

Let us assume that DPB generates an assignment such that σ(i1) 6= σ(j),

σ(i2) 6= σ(j), σ(i1) = σ(i2) and σ(r1) 6= σ(r2). The consistency checker

propagates r1 and r2 down to a as σ(i1) 6= σ(j) and σ(i2) 6= σ(j). It detects

a conflict as σ(i1) = σ(i2), but σ(r1) 6= σ(r2) and generates the following

lemma:

i1 6= j ∧ i2 6= j ∧ i1 = i2 ⇒ r1 = r2

This lemma can be minimized as one inequality is already subsumed by the

other in combination with the equality of the read indices. For example, it

can be minimized to:

i1 6= j ∧ i1 = i2 ⇒ r1 = r2

If we encode inequality and equality into CNF, then the shorter lemma results

in fewer clauses than in the original case. This may be beneficial for the

runtime of the SAT solver.

In general, the indices that are used to decide whether the read should be

propagated or not, e.g. j in the previous example, can be hashed uniquely.

Each lemma contains index(read1) = index(read2) in the premise. Therefore,

it is sufficient to encode that either index(read1) or index(read2) is unequal

to write indices that occur in both propagation paths.

2.11.2 Implementing ρ

The set of reads ρ can be efficiently implemented by hashtables. For each

term of sort Array a hashtable is created. A concrete assignment to a read

index can be used as hash value. In the following, we assume consistency

checking is performed on-the-fly, i.e. we interleave consistency checking with

read propagation. Whenever we propagate a read to its next destination d,

we check if there is already a read in ρ(d), which has the same assignment to

46 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

its index. If this is the case, we immediately perform the consistency check.

In general, for each term a of sort Array it is sufficient to maintain ex-

actly one read per concrete assignment to its read index in ρ(a). If we have

multiple reads in ρ(a) that have the same assignment to the index values and

the same assignment to the read values, then we can think of them as one

equivalence class. In particular, they must have the same assignment to the

read values. Otherwise, on-the-fly consistency checking would have found a

conflict before. Therefore, it is sufficient to remember and propagate only

one representative per class. Whenever we propagate one particular read r1

to its next destination d and there is already a read r2 in ρ(d) which has

the same assignment to index value and read value, then we do not have to

insert r1 into ρ(d) as we already have the representative r2 in ρ(d). There-

fore, we can skip the current propagation path of r1 as we already have the

representative r2 in ρ(d) which is also propagated further if necessary.

Implementing ρ by hashtables results in fewer propagations and consis-

tency checks. In particular, in each propagation, consistency checking must

only be performed with one representative instead of all propagated reads

that have the same assignment to the index values and the same assignment

to the read values.

2.11.3 Positive Array Equalities

Whenever the boolean structure of the original formula prevents DPB from

setting the boolean abstraction variable of an array equality to ⊥, then pre-

processing step 1 can be skipped. Recall that preprocessing step 1 adds one

pair of virtual reads as witness for array inequality. However, if DPB can not

set the abstraction variable to ⊥, then the virtual reads do not have to be

introduced. Rules L and R are sufficient to enforce extensional consistency.

The virtual reads can be safely omitted, which is beneficial for DPA as fewer

reads have to be propagated and checked. Furthermore, this decreases the

number of potential lemmas. As an example, think of a formula where the

boolean structure is in CNF and each array equality occurs solely positively.

An example where preprocessing step 1 can be omitted is shown in Fig. 2.14.

2.11. IMPLEMENTATION DETAILS 47

12 1 2

1
2 3 1 2 3

eq

1 2

a

b c

i j

k er1 r2

w1 w2

α(w1 = w2)

Figure 2.14: Formula φ resp. π for example 7 is shown left. Preprocessing
step 1 is omitted as the equality between w1 and w2 occurs only positively.
Preprocessing step 2 is omitted as it is not necessary if writes are treated
and propagated as reads. The abstraction α(π) is shown right. Note that
the abstraction variables α(r1) and α(r2) are not shown as they are not
reachable from the root of the formula.

2.11.4 Treating Writes as Reads

Inside Boolector we use a polymorphic node type called access . A node of

this type is either a read or a write. The main idea of this implementation

technique is that we can treat a write as read on itself. If we have a write

write(a, i, e), then (A2) guarantees that a read at index i must have read

value e. Instead of explicitly introducing these reads by preprocessing step

2, we can interpret a write as read on itself. We use the polymorphic func-

tions index and value on nodes of type access . If we use them on a node

representing a read, they return read index resp. read value. However, if

we use them on a node representing write(a, i, e), they return write index i

resp. write value e.

Let w be write(a, i, e) and let r be read(w, i). If we apply index to r ,

we obtain i which is the same as applying the function directly on w. If we

apply value to r, we get a read value which has to be equal to e. However,

instead of introducing an abstraction variable for r and refining it to e, we

can use e directly, which is what we obtain if we apply value to w directly.

48 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

In our implementation, we do not actually propagate reads. However, we

propagate objects of type access which are either reads or writes. In this way,

we also ensure congruence on write values. Therefore, we can completely skip

preprocessing step 2.

Example 7.

Let φ resp. π be as shown left in Fig. 2.14. The abstraction α(π) is shown

right.

We run DPB on α(π) and assume that DPB generates a model σ

such that σ(α(w1 = w2)) = ⊤, σ(α(r1)) = σ(k), and σ(α(r2)) 6= σ(e).

We perform on-the-fly consistency checking in depth-first search manner.

Initially, ρ(a) = {r1, r2}, ρ(w1) = {w1}, and ρ(w2) = {w2} We treat w1 as

read and propagate it to w2 as σ(α(w1 = w2)) = ⊤. We update ρ(w2) to

{w1, w2}. We check ρ(w2), find an inconsistency according to rule C, as

σ(α(r1)) = σ(k), but σ(α(r2)) 6= σ(e). We generate the following lemma:

r1 = k ∧ w1 = w2 ⇒ r2 = e

2.11.5 Synthesis on Demand

Boolector uses a functional representation for bit-vectors. Each term of type

bit-vector is mapped to a vector of And-Inverter Graphs (AIGs) [KGP01].

For example, a term that represents the multiplication of two 32 bit-vectors

is mapped to a multiplication circuit represented by AIGs. Each AIG of

the resulting AIG vector represents one output of the circuit. During the

construction of the AIGs, local two-level rewriting is performed [BB06]. The

AIG vectors are encoded into CNF and incrementally added to the SAT

solver in the backend.

In principle, each term could be encoded into AIG vectors and then en-

coded into CNF up front. However, this is not always necessary as a theory

2.11. IMPLEMENTATION DETAILS 49

conflict which leads to unsatisfiability may occur in one small part of the

formula. For example, consider the following formula. Let us assume that

i, j, x and y are bit-vectors with bit-width 64 and udiv represents unsigned

bit-vector division:

i 6= j ∧ read(write(a, j, udiv(x, y)), i) 6= read(a, i)

As i 6= j, the two reads have to be equal according to (A1). Hence, this

formula is unsatisfiable regardless of the unsigned division. If we synthesize

AIGs resp. encode to CNF up front, then the SAT solver will unnecessarily

have to handle a complex 64 bit division circuit on the CNF layer, although

unsatisfiability can be easily concluded without it. Therefore, we postpone

AIG synthesis resp. CNF encoding of read indices, write indices, and write

values. As recently as the consistency checker has to examine the concrete

bit-vector assignment, the synthesis and encoding is performed, and the SAT

solver is called incrementally.

In [BKO+09] for each call to the SAT solver the CNF is generated from

scratch. We incrementally add clauses as required. The incremental usage

of the SAT solver follows [CS03, ES03] as implemented in MiniSAT [ES04]

and PicoSAT [Bie08]. Lazy synthesis is applied in our array consistency

checking algorithm if we find a read or write operation, for which the bit-

vector arguments have not been synthesized yet. At this point the SAT solver

already determined a model for previously added clauses. This boolean model

needs to be extended to new CNF variables and clauses synthesized lazily

for those unsynthesized read or write indices and write values. These indices

and values are unconstrained at this point and thus the SAT solver should

always be able to extend the model.

However, due to restarts [GSK98] even if phase saving [Bie08, PD07] is

employed, the SAT solver is free to flip a value of the original model. If this

happens, the array consistency algorithm has to be aborted and restarted

from scratch: the read and write propagations performed up to this point

may have become invalid. In our experiments this rarely happens, simply

because phase saving tries to keep the old model. However, ignoring changed

50 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

values in the old model would render the array consistency checking algorithm

incomplete and unsound.

In our original version we simply restarted the array consistency checking

algorithm as soon as new indices or write values have been synthesized lazily.

The overhead can be avoided by adding a new API function to the SAT

solver that determines if an incremental call to the SAT solver has changed

the model generated in a previous SAT-call to the SAT solver. This can

be implemented in a conservative way by monitoring forced assignments of

variables. If a forced assignment assigns a value to a variable which is different

from the previously saved assigned value to this variable, and this variable is

not a new synthesis variable, then the old model has changed. In the current

implementation we conservatively mark the old model as changed, even if

later in the same call to the SAT solver these changes are reverted.

It would also be possible to precisely determine whether the old model

has changed by saving the old model value instead of misusing saved phases.

Another option is to ask the SAT solver to search for a model that extends

the previous model. Both alternatives are more complex to implement, and

we leave it to future work to determine whether they are more effective than

our current solution.

2.11.6 CNF Encoding

In Boolector lemmas are directly added on the CNF level. No additional

terms have to be created. Therefore, we need an efficient way to encode

lemmas with bit-vector equalities and inequalities to SAT. For example, as-

sume the congruence axiom (A1) is violated and we add the bit-vector lemma

i = j ⇒ v = w. In order to encode this lemma to CNF, we introduce a

fresh boolean variable e:

(i = j ⇒ e) ∧ (e ⇒ v = w)

This formula is equisatisfiable and can be rewritten into (i 6= j∨e) ∧ (ē∨v =

w). Let m be the number of bits of i and j, and let n be the number of bits

2.11. IMPLEMENTATION DETAILS 51

of v and w. We introduce m fresh variables dk and encode i 6= j as follows:

m
∧

k=1

(

(ik ∨ jk ∨ d̄k) ∧ (̄ik ∨ j̄k ∨ d̄k)
)

If ik = jk, then dk is forced to ⊥. However, if ik 6= jk, then dk is unconstrained

and can be set to ⊤. In order to encode v = w, we add the following clauses:

n
∧

k=1

(

(v̄k ∨ wk ∨ ē) ∧ (vk ∨ w̄k ∨ ē)
)

Finally, we relate the two parts through a linking clause:

e ∨
m
∨

k=1

dk

The idea of this encoding is as follows. If i 6= j, then they differ in at least

one bit. Therefore, one dk can be set to ⊤ to satisfy the linking clause. The

variable e is now unconstrained and can be set to ⊥. Therefore, v and w are

not forced to be equal. However, if i = j, each dk is ⊥. In order to satisfy

the linking clause, e has to be set to ⊤, which forces v and w to be equal.

Generally, a lemma has the following form 3, after eliminating implication:

x
∨

k=1

bk ∨

y
∨

k=1

(uk 6= vk) ∨
z

∨

k=1

(sk = tk)

Assuming all bit-vectors have n bits, the CNF has 2 · n · (y + z) + 1 clauses

and y · n+ z fresh boolean variables. The clauses are all ternary, except the

linking clause of size x+ y · n+ z.

In principle, bit-vector equalities and inequalities can be natively sup-

ported by SAT solvers, similar as in [BB08a]. All different constraints are

directly supported by PicoSAT. This approach can simplify implementation

complexity of SMT solvers that support bit-vectors and is future work.

3Our lemmas have exactly one inequality (y = 1), but we discuss the general case.

52 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

2.12 Experiments

The results of our first experimental evaluation, presented at the SMT’08

workshop [BB08b], are shown in Tab. 2.2. The following abbreviations are

used for benchmark names: sw for swapmem, wc for wchains, and dr for

dubreva. The last character of the benchmark name represents its status,

i.e. s denotes satisfiable and u unsatisfiable.

The experiments were run on our cluster of 3 GHz Pentium IV with 2

GB main memory, running Ubuntu Linux. We set a time limit of 1800 sec-

onds and a memory limit of 1500 MB. We compare our lemmas on demand

approach to (i) an eager approach [SBDL01] implemented as rewrite system.

Both approaches are implemented in Boolector 0.0. Moreover, we compare

the results to (ii) Z3 1.2 [dMB08] and (iii) CVC3 1.2.1 [BT07]. The first col-

umn denotes the benchmark name. In the next column, labelled R, we show

the number of refinements for our lemmas on demand approach. Columns T

and M show solving time in seconds and memory usage in MB. Our approach

clearly outperforms all the others.

Benchmark swapmem uses XOR in order to swap two byte sequences in

memory twice. Extensionality is used to show that the final memory is equal

to the initial. An instance is satisfiable if the sequences can overlap, and un-

satisfiable otherwise. Benchmark dubreva reverses multiple byte sequences

in memory twice. Again, extensionality is used to show that the final mem-

ory is equal to the initial. The instances are all unsatisfiable. In benchmarks

wchains we check the following. Given P 32 bit pointers, the 32 bit word

a pointer points to is overwritten with its pointer address. Then, the order

in which the pointers are written does not matter as long the pointers are 4

byte aligned. Our benchmarks are part of the SMT library [BRST08].

As Boolector and STP have similar approaches we provide additional

experiments comparing the performance of Boolector to the performance

of STP. These results were published in the journal article [BB09d]. Note

that we do not repeat the detailed results of SMT-COMP’08 [BDOS08],

where Boolector clearly won the division of the quantifier-free theory of

bit-vectors, arrays and uninterpreted functions QF AUFBV, and the the di-

2.12. EXPERIMENTS 53

lemmas eager z3 cvc3

name R T M T M T M T M

sm02s 16 0.1 0.6 0.0 0.0 0.1 5.0 554.1 18.2
sm06s 53 0.4 1.2 0.6 3.3 547.6 101.6 90.0 71.9
sm08s 37 0.3 1.4 1.5 5.4 out of

time
out of
time 333.8 175.8

sm10s 34 0.5 1.7 1.0 8.3 out of
time

out of
time 740.2 305.3

sm12s 64 1.0 2.2 3.5 11.2 out of
time

out of
time

out of
time

out of
time

sm14s 57 1.6 2.4 1.8 15.7 out of
time

out of
time

out of
time

out of
time

wc06s 14 0.0 0.0 0.8 7.0 46.3 11.6 8.5 60.1
wc08s 16 0.0 0.0 1.9 14.5 572.2 32.5 23.5 117.6
wc10s 18 0.1 1.3 3.1 20.3 out of

time
out of
time 34.2 193.6

wc12s 20 0.1 1.4 3.5 29.8 out of
time

out of
time 65.4 294.6

wc15s 21 0.1 1.5 4.2 45.8 out of
time

out of
time 126.3 472.6

wc20s 28 0.3 2.0 5.7 80.2 out of
time

out of
time 267.8 897.3

wc30s 36 0.6 2.8 10.9 179.9 out of
time

out of
time

out of
memory

out of
memory

wc60s 70 2.3 4.8 41.8 718.5 out of
time

out of
time

out of
memory

out of
memory

wc90s 96 4.8 6.8
out of

memory
out of

memory
out of
time

out of
time

out of
memory

out of
memory

dr02u 19 0.1 0.6 0.0 0.0 0.5 5.0 out of
time

out of
time

dr03u 41 0.3 0.7 0.1 1.2 0.7 5.6 out of
time

out of
time

dr04u 239 12.5 2.2 12.5 6.5 out of
time

out of
time

out of
time

out of
time

dr05u 379 27.4 3.7 348.3 13.1 out of
time

out of
time

out of
time

out of
time

dr06u 1187 322.2 12.4
out of
time

out of
time

out of
time

out of
time

out of
time

out of
time

dr07u 1637 663.1 18.2
out of
time

out of
time

out of
time

out of
time

out of
memory

out of
memory

sm02u 13 0.1 0.7 0.1 0.8 1.2 5.5 6.1 9.0
sm04u 25 1.1 1.0 3.0 2.0 5.2 7.1 159.6 49.8
sm06u 37 3.2 1.2 27.9 4.2 16.1 8.6 out of

time
out of
time

sm08u 49 9.0 1.5 129.0 8.3 20.7 10.1 out of
time

out of
time

sm10u 61 18.3 2.0 411.2 15.4 30.9 11.0 out of
time

out of
time

sm12u 73 34.7 2.4
out of
time

out of
time 62.1 13.3 out of

time
out of
time

sm14u 85 63.4 2.8
out of
time

out of
time 102.7 19.4 out of

time
out of
time

wc02u 17 0.0 0.0 0.0 0.0
out of
time

out of
time 4.1 5.8

wc04u 33 0.1 0.9 1.7 3.8 10.5 16.4 out of
time

out of
time

wc06u 49 0.4 1.1 13.5 8.2 1.9 5.5 out of
memory

out of
memory

wc08u 65 0.6 1.3 54.8 15.0 848.0 725.1 out of
memory

out of
memory

wc10u 81 1.1 1.5 158.2 23.3 59.7 14.6 out of
memory

out of
memory

wc12u 97 2.4 1.8 333.5 34.3 93.7 22.4 out of
memory

out of
memory

wc14u 113 2.9 1.9 588.2 46.7 19.3 6.9 out of
memory

out of
memory

wc16u 129 4.8 2.1
out of
time

out of
time 35.7 8.1 out of

memory
out of

memory

wc18u 145 6.6 2.3
out of
time

out of
time 209.8 26.2 out of

memory
out of

memory

Table 2.2: Experimental evaluation on extensional examples.

54 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

vision of the quantifier-free theory of bit-vectors QF BV. Moreover, at SMT-

COMP’09 [BDOS09], Boolector won in QF AUFBV again, and was second best

solver in QF BV. We refer the reader to the webpage of the respective SMT

competition [BDOS08, BDOS09] for more details.

STP does not support equalities between arrays. However, many interest-

ing and challenging array benchmarks in the SMT-LIB [BRST08] compare

arrays for equality, i.e. are extensional. Furthermore, STP reads the CVC

Lite [BB04] format4 while Boolector reads BTOR [BBL08] and SMT-LIB

format [RT06]. This was problematic as formula conversion with the help of

CVC3 was not always possible. Therefore, we had to restrict our experiments

to non-extensional examples that were either available both in SMT-LIB and

in CVC format, or were available in only one format and conversion to the

other format was possible.

We selected the STP benchmarks that were available in QF AUFBV in the

SMT-LIB [BRST08]. Unfortunately, testcase10 and testcase15 were not

available. We omitted two cksumcookie benchmarks as they were trivial for

Boolector and STP. Furthermore, we selected seven benchmarks representing

formal verification of the bubble sort algorithm for array elements of 32 bit.

The number within the name of the benchmark represents the size of the

array. These benchmarks are also part of the SMT-LIB and can be found in

the division QF AUFBV.

We ran our benchmarks on our cluster of 3 GHz Pentium IV with 2 GB

main memory, running Ubuntu Linux. We set a time limit of 1800 seconds

and a memory limit of 1500 MB. The results are shown in Tab. 2.3 and

Tab. 2.4. The memory is shown in MB and the time in seconds. Boolector

clearly outperforms STP5.

4http://verify.stanford.edu/CVCL/doc/
5Note that STP can not decide satisfiability for benchmark noregions-fullmemite.

After a few seconds it terminates with exit code 0, but does not print out the result. First,
we thought that this might be a problem due to the YACC-parser. However, also CVC3
uses a YACC-parser and it can parse the benchmark without problems. Setting the stack
size of the STP YACC-parser to unlimited did also not help. Therefore, it remains unclear
why STP terminates without a result.

2.12. EXPERIMENTS 55

STP Boolector
Benchmark Status Mem Time Mem Time
610dd9dc sat out of

memory
out of

memory 9 34

blaster-concrete unsat 48 2 23 0

blaster-small sat 2 0 0 0
blaster unsat 85 5 31 0

blaster-wp-13 unsat 48 2 30 0

blaster-wp-4 unsat 151 10 38 1

blaster-wp-8 unsat 68 4 30 0

bubsort005un unsat 2 4 1 0

bubsort006un unsat 3 30 1 1

bubsort007un unsat 6 151 1 8

bubsort008un unsat 11 784 2 26

bubsort009un unsat out of
time

out of
time 2 72

bubsort010un unsat out of
time

out of
time 4 325

bubsort012un unsat out of
time

out of
time

out of
time

out of
time

cmu-model15 sat 11 2 5 0

cmu-model16 sat 11 2 5 0

cmu-model17 sat 11 2 4 0

ff unknown out of
memory

out of
memory

out of
memory

out of
memory

grep0065 unsat 43 4 2 0

grep0084 sat 183 116 18 15

grep0095 sat 198 127 19 17

grep0106 sat 175 116 20 18

grep0117 sat 193 115 20 19

grep0777 sat out of
memory

out of
memory 33 99

Table 2.3: Comparison between STP 0.1 and Boolector 0.8, part 1. The first
column Status shows the satisfiability status of the instance. Columns Mem
and Time shows memory consumption in MB and solving time in seconds.

56 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

STP Boolector
Benchmark Status Mem Time Mem Time
noregions-fullmemite unknown no

result
no

result 380 40

noregions-stpmem unknown out of
time

out of
time 106 1526

testcase01 sat 22 2 25 52
testcase02 sat 466 50 413 14

testcase03 sat 574 66 500 18

testcase04 sat 590 69 514 18

testcase05 sat 589 68 513 18

testcase06 unsat 297 31 490 13

testcase07 unsat 298 32 491 13

testcase08 unsat 293 31 490 12

testcase09 sat 584 68 513 18

testcase11 sat 323 15 515 13

testcase12 sat 346 16 550 15

testcase13 sat 67 5 79 2

testcase14 sat 63 28 58 1

testcase16 sat 952 50 318 75
testcase17 sat 347 23 335 12

testcase18 sat 43 4 30 87
testcase19 sat 28 3 28 3
testcase20 sat 393 45 505 117
testcase21 sat 390 35 520 53
thumbnail-spin1 sat 1116 75 966 42

Table 2.4: Comparison between STP 0.1 and Boolector 0.8, part 2. The first
column Status shows the satisfiability status of the instance. Columns Mem
and Time shows memory consumption in MB and solving time in seconds.

2.13. RELATED WORK 57

2.13 Related Work

Ganesh et al. present a decision procedure for the theory of bit-vectors and

arrays [GD07], but without support for equalities on arrays. Similar to our

approach, they use word-level preprocessing and an abstraction refinement

loop. They implemented their decision procedure in STP, which is an SMT

solver optimized for large problems in software analysis applications. Un-

fortunately, their decision procedure is presented without details. Neither

in [Gan07] nor in [GD07] are details on their abstraction refinement and

lazy axiom instantiations presented. Neither do they prove soundness nor

completeness.

Ganesh points out in [Gan07] that efficiently handling nested writes is

crucial for SMT solvers applied to software verification. An eager read-over-

write elimination applied to deeply nested writes creates a new copy of the

DAG of writes for every distinct read index. This eager rewriting blows up

in space and is therefore not appropriate, which is also confirmed by our

experiments in [BB08b]. Similar to our approach, Ganesh et al. handle read

over writes lazily. Unfortunately, it remains unclear how their refinement

actually works. In [Gan07] they give a hint that they use the following

policy in their refinement. If they find a spurious model, then they take a

non-constant array index term for which at least one array axiom is violated,

and add all of the violated axioms involving that term. This is in contrast

to our approach, where we always add exactly one lemma.

It is difficult to compare STP to Boolector as STP does not support equal-

ities between arrays. Many interesting and challenging array benchmarks in

the SMT-LIB [BRST08] compare arrays for equality. Therefore, we can not

compare the performances of Boolector and STP on those examples. Never-

theless, our experiments on non-extensional examples, i.e. examples without

comparing arrays for equality, in section 2.12 clearly show that Boolector out-

performs STP, even on many examples for which STP has been optimized.

Stump et al. describe a decision procedure for an extensional theory of

arrays in [SBDL01] and discuss earlier work. They present their decision

procedure as a proof system and prove its correctness. Their approach works

58 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

in two phases. In the first phase a set of sub-goals is created such that no

sub-goal contains write expressions, which may blow up in space. This is in

contrast to our approach where we do not eagerly eliminate write expressions.

Finally, the original goal is satisfiable if and only if one of the sub-goals is

satisfiable. The key concept of their approach is to use partial equations of

the following form:

a =I b ⇔ ∀i. i 6∈ I → read(a, i) = read(b, i)

The set I is a set of indices on which the arrays do not have to be equal. With

these partial equations, write expressions are eliminated in the following way:

write(a, i, e) = b ⇔ a ={i} b ∧ read(b, i) = e

Note that the idea of adding the constraint read(b, i) = e to ensure write

value consistency is similar to our preprocessing step 2. The complexity of

their approach is O(2N lg N), where N is the size of the original goal.

Bradley et al. introduce the array property fragment in [BM07]. The

main idea of this fragment is that array indices can be universally quantified

with some restrictions. The restrictions are necessary to avoid undecidability.

Array property fragments allow the expression of bounded and unbounded

properties of arrays, e.g. array equality, universal properties, partitioning

and sorting. Unlike our decision procedure, their decision procedure has

to eliminate write expressions, which may blow up in space. Furthermore,

the formula has to be put into negation normal form, which is also not

necessary for our approach. Universally quantified sub-terms are reduced

to finite conjunctions. This is done by instantiating quantified variables

over a set of index terms. In [BMS06] Bradley et al. prove that simple

extensions of the array property fragment, e.g. nested reads, may already

result in a fragment for which satisfiability is undecidable. We conjecture

that our approach can be extended to handle interesting properties of the

array property fragment as well.

In [GNRZ07] Ghilardi et al. consider extensions of the theory of arrays

with extensionality where indices have the algebraic structure of Presburger

2.13. RELATED WORK 59

arithmetic. Their extensions consider characteristics like dimension and sort-

edness. They integrate available decision procedures for the theory of ar-

rays and Presburger arithmetic in combination with automatic instantiation

strategies.

In [GKF08] Goel et al. introduce a rule-based axiom-instantiating de-

cision procedure for the parametric theory of arrays, where formulas can

refer to multiple and arbitrarily nested array types. Like our approach, they

use lazy axiom instantiations. Interestingly, theories of arrays are inter-

preted in the context of updatable functions, i.e. read is interpreted as a

function application and write as an update operator. They extended the

congruence-closure module of the SMT solver DPT6 in order to implement

their approach. This is contrast to our approach, which is not based on

congruence-closure. Unfortunately, the effectiveness of our implementation

can not be compared to their implementation as they only report on experi-

mental results in QF AUFLIA, but not in QF AUFBV.

Manolios et al. introduce a memory abstraction algorithm in the context

of the Bit Level Analysis Tool BAT in [MSV06]. Memories are functionally

represented with the help of array semantics, i.e. get and set in BAT cor-

respond to read and write in SMT. Their approach uses equivalence classes

of memories. Index values, i.e. bit-vector addresses that are used in set and

get, are analyzed, and shorter bit-vector addresses for addressing the ab-

stract memory are created. In addition to memory abstraction, rewriting is

performed to simplify memory accesses.

In [BNO+08a] Bofill et al. introduce a write base approach in the context

of DPLL(T) to handle the extensional theory of arrays. Their approach does

not eliminate write expressions and does not lazily instantiate array axioms.

However, the theory solver asks the boolean engine to split on demand on

equality literals between indices.

The theorem prover Simplify [DNS05] uses Nelson-Oppen [NO79] to com-

bine decision procedures for several theories, e.g. arrays, maps and sets, and

uses a matcher to reason about quantifiers.

Finally, UCLID [LS04] is a decision procedure for the theories of uninter-

6http://sourceforge.net/projects/dpt

60 CHAPTER 2. EXTENSIONAL THEORY OF ARRAYS

preted functions, integer linear arithmetic, and arrays which supports some

limited forms of quantification. UCLID uses eager translation to SAT and

lambda expressions for arrays. Furthermore, Bryant et al. propose a decision

procedure for bit-vector arithmetic with automatic abstraction refinement

in [BKO+09]. The procedure is implemented in UCLID. It alternates be-

tween under- and over-approximations of the original formula.

2.14 Conclusion

We discussed lemmas on demand for the extensional theory of arrays. In

particular, we presented our preprocessing, formula abstraction, consistency

checking, and abstraction refinement, i.e. lemma generation on demand. Fur-

thermore, we proved that our approach is sound and complete, and provided

a formal description of our abstraction refinement. We discussed complexity

and provided implementation details and optimizations that are important

for real implementations. Then, we discussed related work. Our overall ex-

periments and the SMT competitions in 2008 and 2009 confirm that our

approach implemented in our SMT solver Boolector is more efficient than

other approaches in state-of-the-art solvers. Similar to model checking, where

abstraction is used to handle the state explosion problem, abstraction tech-

niques are the key to efficiently decide large and complex SMT formulas.

Chapter 3

Boolector

3.1 Introduction

Boolector is an efficient SMT solver for the quantifier-free theory of bit-

vectors in combination with the extensional theory of arrays. Bit-vectors

can be used to express designs and specifications directly on the word-level,

while arrays can be used to model memory, e.g. main memory in software,

or memory components like caches and FIFOs in hardware systems. The

combination of bit-vectors and arrays allows reasoning about software and

hardware on a more appropriate level than pure propositional logic. Gen-

erally, SMT solvers benefit from the additional word-level information and

can generate word-level models. Boolector provides concrete models for bit-

vectors and arrays.

The SMT competitions [BDOS08, BDOS09] in 2008 and 2009 showed,

that there has been a lot of progress in the SMT community. In 2008, the

winner of each division clearly outperformed last year’s winner. In particular,

the performance of SMT solvers in the quantifier-free theory of bit-vectors

QF BV, and bit-vectors with arrays and uninterpreted functions QF AUFBV, in-

creased heavily. Boolector participated in exactly these two divisions and won

both. In QF BV it solved 18 formulas more than Z3.2 and 92 formulas more

than Spear v1.9 [Bab08] which was the winner of 2007. In QF AUFBV Boolec-

tor solved 16 formulas more than Z3.2 and 64 more than Z3 0.1 [dMB08]

61

62 CHAPTER 3. BOOLECTOR

which was the winner of 2007. In the SMT competition [BDOS09] 2009,

Boolector won again in QF AUFBV and achieved the second place in QF BV.

3.2 Architecture

Boolector depends on term rewriting and bit-blasting for bit-vectors. Lem-

mas on demand [dMR02] are used to handle the extensional theory of arrays

lazily [BB09d]. It takes a formula expressed in the SMT-LIB format [RT06],

or alternatively in the BTOR format [BBL08], as input. The BTOR format

is a low-level bit-vector format with clean semantics that is easy to parse.

Additionally, BTOR supports bit-vector arrays and model checking of safety

properties. In addition to these input formats, Boolector also provides a rich

C API, which allows to use Boolector as library. Boolector is implemented

in C. A schematic overview is shown in Fig. 3.1. In the following we briefly

discuss the main components and features of Boolector. After the overview,

we discuss selected optimization techniques and features in detail.

Parser The parser reads the input and builds an abstract syntax DAG.

During the parse process, basic rewriting rules are applied to simplify the

DAG. Boolector can parse the SMT-LIB [RT06] and BTOR [BBL08] formats.

Rewriter The rewriting engine provides rewrite rules that can be divided

into three levels. By default, all rewrite levels are applied to simplify the

input. Level 1 rewrite rules are basic rules, e.g. a∧¬a⇔ ⊥, that are applied

during formula construction. Level 2 rewrite rules consist of global term sub-

stitutions in combination with static analysis techniques. Before terms are

substituted, they are topologically sorted. Then, term substitutions are per-

formed in one pass. Level 3 rewrite rules perform arithmetic normalization.

Rewrite rules of quadratic worst case complexity are additionally bounded

in recursion depth.

Array Consistency Checker This checker is one main component in

the lemmas on demand approach for the quantifier-free extensional theory

3.2. ARCHITECTURE 63

of arrays [BB09d]. It checks if the current assignment by the SAT solver is

consistent with the theory.

Under-approximation Boolector supports under-approximation of bit-

vector variables and reads on bit-vector arrays. This module is responsi-

ble for realizing under-approximation directly on the CNF level. Under-

approximation constraints are incrementally added as clauses that addition-

ally constrain the search space. Boolector supports under-approximation

techniques and refinement strategies. The under-approximation can be re-

fined locally or globally. On the one hand, in the global refinement strategy,

the under-approximation is refined equally for all variables and reads. On

the other hand, in the local strategy, the under-approximation refinement is

individually performed for each variable and read. The under-approximation

feature allows to generate ”smaller“ models that are typically easier to inter-

pret by users. We refer the reader to section 3.3 for a more detailed discussion

of our under-approximation techniques.

SAT Solver PicoSAT [Bie08] is used as SAT solver. It uses state of the

art techniques like watching literals, phase saving, conflict learning and rapid

restarts. Boolector uses PicoSAT incrementally to decide the extensional the-

ory of arrays, and for under-approximation.

Model Generator The ability to provide concrete models in the satis-

fiable case cannot be overestimated. In general, a satisfiable formula cor-

responds to a bug that has been found. The ability to provide a concrete

counter example that can be directly used for debugging is one of the main

features in the success story of model checking [Cla08]. Boolector can out-

put concrete bit-vector and array models. The array models are (partially)

instantiated arrays, where indices and values are concrete bit-vectors.

Formula Refinement The formula refinement is the heart of Boolector.

Initially, the bit-vector part is translated to SAT while the array part is

abstracted with the help of fresh bit-vector variables. The refinement loop

64 CHAPTER 3. BOOLECTOR

Refinement

SAT / UNSAT MODEL

Approximation

SAT Solver

Consistency

SMT−LIB BTORParser

Rewriter

FormulaUnder−
Array

Checker

Generator

Model

Figure 3.1: Schematic overview of Boolector.

calls the SAT solver to obtain an assignment. If the result is unsatisfiable,

the loop terminates with unsatisfiable. However, if the result is satisfiable,

the array consistency checker is used to check if the current assignment is

consistent with the extensional theory of arrays. If the current assignment

is consistent, then the formula is satisfiable. However, if the assignment is

inconsistent, a lemma on demand, that rules out this and similar assign-

ments, is added as formula refinement. Additionally, under-approximation

refinement can be enabled for bit-vector variables and reads. In this case

the under-approximation refinement and the lemmas on demand refinement

for the extensional theory of arrays are intertwined. We refer the reader to

section 3.3 for a discussion of the under-approximation techniques and to

section 3.3.4 for a discussion of the intertwining technique.

3.3. UNDER-APPROXIMATION TECHNIQUES 65

Pretty Printer Boolector allows to convert formulas from BTOR to SMT-

LIB format and vice versa. The pretty printer can be combined with Boolec-

tor’s rewriting module to internally simplify the formula before conversion.

Model Checker Boolector can also be used as incremental model checker

for word-level safety properties of synchronous hardware systems with mem-

ories [BBL08]. The BTOR format provides a sequential ”next“ operator,

which can be used to express state transitions of bit-vector registers and

memories. Boolector supports bounded model checking for witnesses, and k-

induction with and without all-different constraints. All-different constraints

are used for simple paths. Appendix A introduces the BTOR format and its

next operator. Moreover, we provide experimental results on Boolector’s

model checking techniques.

Symbolic Overflow Detection Boolector directly supports symbolic over-

flow detection for fixed-size bit-vector addition, subtraction, multiplication

and division in its interface. Moreover, symbolic overflow detection is sup-

ported in Boolector’s native input format BTOR [BBL08]. An overflow detec-

tion operator can be used as a predicate that represents whether an overflow

may occur or not. We refer the reader to section 3.5 for a discussion of our

symbolic overflow detection techniques.

3.3 Under-Approximation Techniques

The main motivation of most approximation techniques is to speed-up deci-

sion procedures. While over-approximation technique tend to speed-up un-

satisfiable formulas, under-approximation techniques tend to speed-up sat-

isfiable formulas. In order to remain sound and complete, approximation

techniques are typically combined with a refinement loop. Recently, approx-

imation techniques are also used in the context of decision procedures for

bit-vectors [BKO+09, HH08].

66 CHAPTER 3. BOOLECTOR

Over-approximation techniques are in the spirit of the Counter Exam-

ple Guided Abstraction Refinement Framework [CGJ+03] (CEGAR) and

are typically used in lazy SMT approaches [Seb07]. For example, over-

approximation techniques are used to decide complex formulas containing

arrays in [BB09d, Gan07]. In the rest of this section we will focus on under-

approximation techniques.

The basic idea of under-approximation techniques in the context of bit-

vectors is to restrict individual bits of bit-vectors. While such domain restric-

tions typically lead to a smaller search space and a speed-up for satisfiable

formulas, it additionally produces “smaller” models which means that the

domain of the variables are smaller. If a small model can be found, it must

also be a model of the original formula. Small models are beneficial for diag-

nosis, for instance if the model is directly analyzed by users for debugging.

Furthermore, in the area of test case generation, small models lead to test

cases with reduced test data size.

One way of using over-approximations and under-approximations in bit-

vector logic has been pioneered in [BKO+07, BKO+09]. In the context of

under-approximation, themmost significant bits of variables are additionally

restricted. The remaining n least significant bits are not concerned by the

under-approximation and remain variable. In the rest of this section we call

n the effective bit-width.

In [BKO+09] it is proposed to use an under-approximation technique

which corresponds to sign-extension. Let n be the effective bit-width. The

m most-significant bits of a variable are forced to be equal to the nth least

significant bit, the last effective bit. This technique reduces the domains of

variables and leads to smaller models where bit-vectors are interpreted in the

context of two’s complement. An example with an effective bit width of four

is shown left in Fig. 3.2.

It is also possible to force the m most significant bits to zero resp. one

which we call zero-extension resp. one-extension. Zero-extension has been

suggested in [BKO+09]. While zero-extension leads to smaller models where

bit-vectors are interpreted in an unsigned context, one-extension is benefi-

cial if a formula has small models with negative values. Examples with an

3.3. UNDER-APPROXIMATION TECHNIQUES 67

x3x3x3x3x3 x x x2 1 0

sign−extend eff. width

x3 x x x2 1 0

zero−extend eff. width

0 0 00

Figure 3.2: Under-approximation techniques: Sign-extension is shown left
and zero-extension is shown right. The effective bit-width is four in both
examples.

x3 x x x2 1 0

one−extend eff. width

1 1 11 x3 xxxx 1 0 0x1 xx223

C3 C2 C1 C0

Figure 3.3: Under-approximation techniques: One-extension is shown left
and class splitting is shown right. The effective bit-width resp. number of
classes is four.

effective bit-width of four are shown in Fig. 3.2 resp. Fig. 3.3. In [HH07]

zero-extension and one-extension were used for bounded model checking of

embedded software.

We propose an additional under-approximation technique that partitions

bits of individual bit-vectors into equivalence classes. All bits in one class

are forced to have the same value. An example is shown Fig. 3.3. The

under-approximation refinement increases the number of classes per variable,

or splits individual classes. The idea of this technique is that only some

individual bits of the vector are important to satisfy the formula. Therefore,

the other bits can be forced to the same value which reduces the search space.

3.3.1 Under-Approximation on CNF Layer

We propose to perform under-approximations with the help of additional

clauses on the CNF layer. The original formula is translated to CNF once.

In each refinement iteration i, we perform an under-approximation by adding

new clauses to the SAT solver incrementally and also use assumptions as

presented in [CS03].

First, we introduce a fresh boolean under-approximation variable e. Then,

we perform an under-approximation by adding new clauses. Let n be the ef-

fective bit width of a bit-vector variable v of bit-width w. To perform a

68 CHAPTER 3. BOOLECTOR

sign-extending under-approximation we add the following clauses:

w−1
∧

i=n

((vn−1 ∨ vi ∨ ē) ∧ (vn−1 ∨ vi ∨ ē))

Finally, we assume [CS03] e to enable the under-approximation.

For example, let v be a bit-vector variable with bit-width eight and an

effective bit-width of six. We add the following clauses to perform a sign-

extending under-approximation:

(v5 ∨ v6 ∨ ē) ∧ (v5 ∨ v6 ∨ ē) ∧ (v5 ∨ v7 ∨ ē) ∧ (v5 ∨ v7 ∨ ē)

Assuming e enforces v5 = v6 = v7.

Zero-extension can be encoded as follows. Again, let n be the effective bit

width of a bit-vector variable of bit-width w. We add the following clauses:

w−1
∧

i=n

(vi ∨ ē)

One-extension can be encoded analogously.

If we have to refine our approximation, we add the unit clause ē in order to

disable the current approximation. This gives the SAT solver also the oppor-

tunity to recycle clauses. Then, a refined under-approximation is performed

with the help of another fresh boolean under-approximation variable.

3.3.2 Refinement Strategies

Generally, the effective bit-width can be used as a metric of approximation.

Typically, the effective bit-width is initialized to one, i.e. the domain of a

bit-vector variable is restricted to {−1, 0} in a signed resp. {0, 1} in an un-

signed context. During the refinement the effective bit width is increased. In

order to avoid too many refinement loops, the effective bit-width is typically

doubled in each iteration. Traditionally, in the worst case, e.g. if the original

formula is unsatisfiable, the effective bit-width reaches the original bit-width.

With the proposed refinement on the CNF layer, two main refinement

3.3. UNDER-APPROXIMATION TECHNIQUES 69

strategies are possible which we call global and local. On the one hand,

local refinement strategies maintain one fresh boolean under-approximation

variable e for each bit-vector in each refinement. The benefit is a precise

refinement as we can ask the SAT solver if it has used the respective e to

derive unsatisfiability. Only those under-approximations that have been used

need to be refined. However, in the worst case we have to introduce k · r

fresh variables, where k is the number of bit-vector variables and r is the

maximum number of refinements.

On the other hand, the global refinement strategy maintains exactly one

under-approximation variable for all bit-vector variables. The benefit is less

overhead, as we need only r additional boolean variables, where r is the

number of refinements. However, the refinement is imprecise.

3.3.3 Early Unsat Termination

Traditional under-approximation techniques perform the approximation out-

side the SAT solver. The CNF is generated from scratch in each refinement

iteration. This makes it impossible to find out whether the current under-

approximation has been responsible for deriving unsatisfiability or not. In

the worst case, the original formula is unsatisfiable and we have the addi-

tional overhead of the under-approximation refinement, which is slower than

solving the original formula up front.

The proposed under-approximation refinement on the CNF layer enables

the decision procedure to terminate earlier, even if the original formula is

unsatisfiable. If the under-approximated formula is unsatisfiable, then we

can use the under-approximation variables to ask the SAT solver which

under-approximations have been used to derive unsatisfiability. If no under-

approximation variables have been used, then we can conclude that the orig-

inal formula is unsatisfiable, and terminate. The early unsat technique is

shown in Fig. 3.4.

Furthermore, the refinement on the CNF layer allows the SAT solver

to keep learned conflict clauses over refinement iterations. This would be

impossible if the CNF was generated on scratch in each refinement iteration.

70 CHAPTER 3. BOOLECTOR

SAT?

Call SAT solver

YES

Formula is satisfiable Formula is unsatisfiable

NO YES

Add under−approx. clauses C

Refine under−approx.Encode input to CNF

C used?

NO

Figure 3.4: Early Unsat Termination.

In a first implementation we let the SAT solver generate unsat cores

modulo assumptions, but simply recording those assumptions [CS03] that

were used in deriving the empty clause is sufficient. Moreover, it is much

faster, and easier to implement, both on the side of the SAT solver and on

the side of the SMT solver.

3.3.4 Combining Approximation Techniques

Figure 3.5 shows how over-approximation and under-approximation tech-

niques can be combined to solve complex SMT formulas. We consider the

quantifier-free theory of arrays combined with the quantifier-free theory of

bit-vectors. The idea is to use over-approximation techniques for the array

part [BB09d, Gan07] and under-approximation techniques for bit-vectors.

First of all, we perform an over-approximation by replacing reads by fresh

bit-vector variables. Then, we translate the bit-vector part of the formula

to CNF and add a set C of under-approximation clauses. In each iteration

we call the SAT solver. Depending on the result we have to perform an

additional check. On the one hand, if the result is satisfiable we have to check

if the current model σ respects the theory of arrays. If not, we have to refine

our over-approximation with a lemma on demand [dMR02, FJS03, BDS02].

3.3. UNDER-APPROXIMATION TECHNIQUES 71

Add lemma

SAT?

Formula is unsatisfiable

NO YES

Add under−approx. clauses C

Refine under−approx.

C used?

NO

Encode to CNF

YES

spurious?

Call SAT solver

Array formula

Formula is satisfiable

Call SAT solver

Refine over−approx.

NO

YES

Replace reads by variables

Figure 3.5: Combining over-approximation and under-approximation.

Otherwise, we can terminate with the model σ and the result satisfiable. On

the other hand, if the result of the SAT solver is unsatisfiable we have to

check if the current set of under-approximation clauses has been used. If

not, we can terminate with the result unsatisfiable. Otherwise, we disable

the current under-approximation and continue with a refined approximation.

3.3.5 Experiments

We implemented the presented approximation techniques in our SMT solver

Boolector [BB09a]. Boolector is an SMT solver for the quantifier-free the-

ory of fixed-size bit-vectors combined with the quantifier-free extensional

theory of arrays [BB09d]. It is the winner of the last SMT competition in

2008 [BDOS08] in the bit-vector category (QF BV) and also in the division

of bit-vectors with arrays (QF AUFBV). Moreover, Boolector can be used as

72 CHAPTER 3. BOOLECTOR

word-level bounded model checker for synchronous hardware and software

systems [BBL08]. For our experiments we used Boolector 1.0.

The results of our experiments are shown in Fig. 3.6 and Fig. 3.7. We used

benchmarks from QF AUFBF of the SMT library [BRST08] (June 1st, 2008).

As expected, under-approximation techniques speed up satisfiable instances,

but slow down unsatisfiable instances. We summarize further observations.

First, the under-approximation by classes technique performs as good as

the under-approximation by sign-extension technique on the satisfiable in-

stances of QF AUFBF. However, it performs worse on the unsatisfiable bench-

marks. Second, the average ratio effective bit-width / original bit-width is

16% (without egt examples) on satisfiable and 27% on unsatisfiable bench-

marks, which corresponds to an impressive reduction of 84% resp. 73%.

Third, early unsat termination occurs in 1553 from 3552 unsat cases. Fi-

nally, the global refinement strategy seems to be a good approximation of

the local strategy. It is much easier to implement, is often as good as the

local strategy, and should be sufficient in most cases.

3.4 Unconstrained Variables

Independently from Roberto Bruttomesso in [Bru08], we observed that SMT

benchmarks often contain unconstrained variables and implemented an op-

timization technique in our SMT solver Boolector. Unconstrained variables

are inputs that are referenced only once in the formula, which means that

they are not affected by further side conditions. Typically, their concrete

value assignment is not essential for deciding the satisfiability of the formula.

We can rewrite a formula containing unconstrained variables into a simpler

equisatisfiable formula.

3.4.1 Bit-Vectors

In [Bru08] Roberto Bruttomesso showed that a bit-vector function f can be

replaced by a fresh bit-vector variable if at least one of its operands is an

unconstrained variable v, and f can be ”inverted“ with respect to v. We

3.4. UNCONSTRAINED VARIABLES 73

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

B
o

o
le

c
to

r-
1

.0
-u

a
c
-u

a
l
s
e

c
o

n
d

s

Boolector-1.0 seconds

Figure 3.6: Boolector (x-axis) vs. Boolector with class under-approximation
and local refinement strategy (y-axis). Benchmarks are from QF AUFBF and
are all satisfiable.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

B
o

o
le

c
to

r-
1
.0

-u
a
c
-u

a
l
s
e
c
o
n
d
s

Boolector-1.0 seconds

Figure 3.7: Boolector (x-axis) vs. Boolector with class under-approximation
and local refinement strategy (y-axis). Benchmarks are from QF AUFBV and
are all unsatisfiable.

74 CHAPTER 3. BOOLECTOR

call a variable unconstrained in an SMT formula φ if it has only one parent

in the abstract syntax DAG representation of φ. We assume that structural

hashing is enabled in order to build the DAG representation.

For example, consider the following formula. Let t be an arbitrary bit-

vector term, and let v1, v2 and v3 be bit-vector variables. Moreover, assume

that v1, v2, v3 and t have bit-width 4, + denotes bit-vector addition, and &

denotes bit-wise AND.

v3 + t = v1 & v2

Obviously, a decision procedure is free to choose the concrete assignments

of v1 and v2 in order to obtain the concrete value of v1 & v2 that is needed

to satisfy the formula. For example, if the decision procedure has fixed the

left part of the equality to 0110, then v1 & v2 must also evaluate to this

value in order to satisfy the formula. As v1 and v2 do not occur elsewhere

in the formula, their assignments may be adjusted freely in order to satisfy

0110 = v1 & v2, e.g. v1 can be assigned to 1110 and v2 can be assigned to

0111. As the assignments to v1 and v2 can always be adjusted in order to

obtain the needed value for v1 & v2, we can replace v1 & v2 by a fresh bit-

vector variable v4 itself. In this way we can eliminate the bit-vector addition

and obtain a simpler equisatisfiable formula. A similar argument can be

applied to the left side of the equality. Independent from the assignment to

t, the decision procedure can adjust the concrete assignment to v3 to obtain

the needed value for v3 + t in order to satisfy the formula. Therefore, we

can replace v3 + t by a fresh bit-vector variable v5 and obtain the following

equisatisfiable formula:

v4 = v5

Note that t, which may be an arbitrary complex bit-vector term, has been

completely eliminated.

In principle, it is straightforward to apply the same propagation tech-

nique to boolean operators, equality, if-then-else on terms, and bit-vector

predicates. For example, it is obvious that we can replace v4 = v5 by a fresh

boolean variable b in order to get a trivially satisfiable formula. In [Bru08]

propagation rules are shown for addition, multiplication, not, and, or, con-

3.4. UNCONSTRAINED VARIABLES 75

catenation, and if-then-else on terms.

There are some corner cases which must be considered in order to preserve

correctness. For example, in [Bru08] it is shown that such a corner case is

multiplication by an even constant. For example, if we consider the formula

110 · v = 111, then we are not allowed to replace the left side of the equality

by a fresh bit-vector variable as this would result in a satisfiable formula,

while the original formula is unsatisfiable.

Moreover, consider the following corner cases. Let < denote the bit-vector

predicate unsigned-less-than. Consider the formula v < 000. Obviously,

we may not replace this formula by a fresh boolean variable as this would

result in a satisfiable formula, while the original formula is unsatisfiable.

Analogously, 111 < v is a corner case as well.

3.4.2 Arrays

We extend the optimization technique of propagating unconstrained variables

to the quantifier-free extensional theory of arrays. Let a be an unconstrained

array variable, i.e. it has exactly one parent. Recall that we assume that

the original formula φ is represented as DAG. Moreover, let t be an arbi-

trary array term and v be an arbitrary unconstrained variable. Consider the

following rewrite rules:

1. read(a, i) is rewritten to a fresh variable of same sort.

2. write(a, i, v) is rewritten to a fresh array variable of same sort.

3. a = t is rewritten to a fresh boolean variable.

The first rewrite rule expresses that if a is an unconstrained array variable

and read(a, i) is the only operation applied to a, then the decision procedure

can freely adjust the read value. Independent from the index i, which may be

an arbitrary complex term, we can replace this read by a fresh variable. This

rewriting eliminates the array variable a, the read read(a, i), and possibly

the index term i if it is referenced only at this place in the formula.

The second rewrite rule expresses that if we write an unconstrained value

to an unconstrained array variable, then we can replace the result by a fresh

76 CHAPTER 3. BOOLECTOR

array variable. Interestingly, as in the read case, the index term i may be an

arbitrary complex term as well. The main point of this rewrite rule is the

following. Let j be an arbitrary index term. A decision procedure can freely

adjust the value of read(write(a, i, v), j). We have to consider two cases. On

the one hand, if the current value of i is equal to j, then the read value

has to be equal to the unconstrained variable v. As v is unconstrained, the

read value can be freely adjusted by the decision procedure. On the other

hand, if the current value of i is not equal to j, then the read is applied

to a directly. As a is unconstrained, the read value can be freely adjusted

by the decision procedure. Obviously, applying reads to write(a, i, v), where

a and v are unconstrained, is equisatisfiably equal to applying reads to an

unconstrained array variable. Therefore, we can replace write(a, i, v) by a

fresh array variable a in order to obtain a simpler and equisatisfiable formula.

The third rewrite rule expresses that if we compare an unconstrained

array variable with an arbitrary array term for equality, then we can replace

the equality by a fresh boolean variable to obtain a simpler and equisatisfiable

formula. As a is unconstrained, the decision procedure can either assign the

unassigned elements of a and t in such a way that a and t are extensionally

equal, or it can generate an assignment such that the two arrays differ at

one particular position k, i.e. the concrete value of read(a, k) is not equal to

read(t, k).

As an example, consider the following formula. Let a1 · · · a3 be arbitrary

unconstrained array variables, i1 · · · i5 arbitrary index terms, and v1 · · · v3

arbitrary unconstrained value terms.

read(write(write(a1, i1, v1), i2, v2), i3) = read(a2, i4) ∧ write(a3, i5, v3) = a3

Starting from a1, we use rewrite rule 2 recursively to rewrite the array term

write(write(a1, i1, v1), i2, v2) into a fresh unconstrained array variable. As

the only parent of this new array variable is the read at index i3, the array

variable is unconstrained as well. Therefore, we can perform rewrite rule

1 to rewrite the read into a fresh variable v4. The other read read(a2, i4)

can be directly rewritten into v5 by rule 1. Now, we apply rule 3 to rewrite

3.5. SYMBOLIC OVERFLOW DETECTION 77

write(a3, i5, v3) = a3 into a fresh boolean variable b1 in order to obtain the

following intermediate result.

v4 = v5 ∧ b1

Obviously, we can rewrite v4 = v5 into a fresh boolean variable b2 and obtain

b2 ∧ b1. Again, we can rewrite this formula into the fresh boolean variable

b3 which is trivially satisfiable.

3.4.3 If-then-else

Finally, we discuss how unconstrained variables can be propagated through

if-then-else on terms. Let p be an arbitrary formula, and let v1 and v2 be

arbitrary terms of the same sort. As already pointed out in [Bru08] for

bit-vectors, we can rewrite a sub-term ite(p, v1, v2) into a fresh variable of

the same sort as v1 and v2 to obtain an equisatisfiable formula. The main

observation is, that the result of ite is always an unconstrained variable,

regardless of the assignment to p.

We introduce another rewrite rule for if-then-else on terms. Let b be

an unconstrained boolean variable, let v be an unconstrained term variable,

and let t be an arbitrary term. Moreover, v and t are of the same sort.

We can rewrite the term ite(b, v, t) into a fresh variable of the same sort as

v and t. Analogously, we can rewrite ite(b, t, v). A decision procedure is

free to assign the appropriate value to b in order to select the unconstrained

variable v. Therefore, we can rewrite the if-then-else in order to obtain a

simpler equisatisfiable formula.

3.5 Symbolic Overflow Detection

Overflow detection plays an important role in verification, in particular in

the context of software verification. To avoid growth in bit-vector length,

the resulting bit-width of arithmetic operations such as fixed-size bit-vector

addition is the same as the bit-width of the inputs. This is a well-known

78 CHAPTER 3. BOOLECTOR

source of software defects as the result is not fully representable in general.

In contrast to other SMT solvers, Boolector supports symbolic over-

flow detection for fixed-size bit-vector addition, subtraction, multiplication

and division directly in its interface, and also in its native input format

BTOR [BBL08]. An overflow operator is simply a predicate that returns

whether an overflow may occur or not. Such overflow predicates can be

collected and integrated into verification conditions in order to explicitly

consider verification in the context of overflows.

In the following we discuss how Boolector’s symbolic overflow detection

operators are implemented on the term layer. Direct support of overflow

detection takes the load off the user, i.e. the user does not have to explicitly

build non-trivial and error prone overflow detection circuits for each bit-

vector operation where overflow detection should be considered.

In the following we assume that the two’s complement is used to represent

signed bit-vectors. With a[p] we denote the bit of bit-vector a with bit-width

n at position p, with 0 ≤ p < n. We use the symbols a, b and r to denote

bit-vectors, n to denote a fixed bit-width with n > 0, and c[p] to denote the

carry-out of the full-adder at position p with 0 ≤ p < n. In the context

of two’s complement semantics, we write S(a) to denote the sign-bit of a,

i.e. the most significant bit of the fixed-size bit-vector a.

Moreover, we write Z(a) to denote the number of leading zeros of a, and

L(a) to denote the number of leading bits of a. The number of leading bits

is either the number of leading ones for bit-vectors that represent negative

integers, or the number of leading zeros for bit-vectors that represent positive

integers. For example, the bit-vector constant 11100101 has four leading bits,

while 00101010 has two leading bits. Finally, in order to keep the presentation

short, we sometimes use a[p] as abbreviation for the truth value of a[p] = 1.

3.5.1 Addition

Unsigned overflow detection

Boolector uses a ripple-carry-adder implementation for bit-vector addition,

represented as vector of AIGs. Bit-vector addition overflows can be simply

3.5. SYMBOLIC OVERFLOW DETECTION 79

detected by examining the carry-out of the full-adder at the most significant

bit. An overflow occurs if and only if c[n− 1] is 1 [Wir95].

Unsigned bit-vector addition overflow detection is implemented in Boolec-

tor as follows. We have to examine c[n− 1] in order to detect if an overflow

may occur or not. However, we cannot directly examine c[n − 1] as it is

not part of the resulting bit vector, i.e. the carry-out of the full-adder at the

most-significant bit position is discarded. Therefore, we have to extend both

operators by a leading zero to perform a bit-vector addition of bit-width n+1,

i.e. we compute r = {1′b0, a}+{1′b0, b}. Finally, we are able to examine r[n]

which is equal to c[n− 1] in order to determine if an overflow may occur.

Signed overflow detection

In the context of signed bit-vector addition, an overflow occurs if and only if

the operands have equal sign bits, but the sign bit of the result differs. This

fact can be expressed more formally in the following way. Let r = a + b be

the resulting bit-vector of bit-width n. An overflow occurs if and only if

(S(a) ∧ S(b) ∧ ¬S(r)) ∨ (¬S(a) ∧ ¬S(b) ∧ S(r))

Note that signed addition overflows can also be detected by computing

c[n− 1]⊕ c[n− 2] [Wir95], where ⊕ denotes XOR. However, this principle is

not suitable for Boolector as its overflow detection is directly implemented

on the term layer where individual carry-out bits of the underlying AIG layer

cannot be accessed easily.

3.5.2 Subtraction

Unsigned overflow detection

As usual, Boolector implements bit-vector subtraction a− b as a+ (−b). An

overflow occurs if and only if c[n− 1] is 0.

80 CHAPTER 3. BOOLECTOR

Signed overflow detection

For signed bit-vector subtraction there are exactly two cases where an over-

flow may occur. In the following we interpret the bit-vector operands as

integers:

• We subtract a negative integer from a positive integer and the result is

negative.

• We subtract a positive integer from a negative integer and the result is

positive.

Let r = a−b be the resulting bit vector of length n. For signed bit-vector

subtraction an overflow occurs if and only if (¬S(a)∧ S(b)∧ S(r))∨ (S(a)∧

¬S(b) ∧ ¬S(r)).

3.5.3 Multiplication

Simple multiplication overflow detection circuits compute a 2n product and

examine the nmost significant bits of the result. This approach is not feasible

for symbolic overflow detection as symbolic multiplication circuits are very

challenging for decision procedures. Moreover, the n most significant bits

are not needed for any other computations and are therefore not shared by

structural hashing techniques.

In [SGBB00], overflow detection is implemented by combining several

overflow detection units. Moreover, only a n+1 product has to be computed

instead of a 2n product. Inspired by this technique, we implemented overflow

detection directly on the term layer as follows.

Unsigned overflow detection

Let r = a∗b the resulting bit vector of length n+1. Recall that Z(a) denotes

the number of leading zeros for bit-vector a. An overflow occurs if and only

if Za + Zb < n− 1 or r[n] is 1 [SGBB00].

Figure 3.8 shows the principle how Boolector detects if the sum of leading

zeros is less than n − 1 or not. First, we examine the most significant bit

3.5. SYMBOLIC OVERFLOW DETECTION 81

1

1

0 0

1

... ...

a[1]

a[n− 2]

b[n− 1]

a[n− 1]

b[2]

b[1]

Figure 3.8: Leading zeros examination principle. The examination starts
at a[n − 1] and moves either right or down. Dashed edges are taken if the
considered bit is zero, and solid edges otherwise.

82 CHAPTER 3. BOOLECTOR

a[n−1]. If this bit is 0, then we have found one leading zero and we continue

our examination with a[n−2]. However, if a[n−1] is 1, then a does not have

any leading zeros at all and we examine b[1]. If b[1] is 1, then b can have at

most n− 2 leading zeros and we have detected an overflow. However, if b[1]

is zero, then we continue our examination with b[2].

If we reach the constant 1 in the graph, then we know that the sum of

leading zeros is less than n− 1 and we have detected an overflow. However,

if we reach the constant 0, then we know that the sum of leading zeros is

greater than or equal n − 1. If this is the case, we have to examine r[n] in

order to determine if an overflow may occur or not.

This examination principle leads to the following formula which is used

by Boolector internally to determine if the sum of leading zeros is less than

n− 1 or not.
n−1
∨

i=1

(a[i] ∧
i

∨

j=1

b[n− j])

For example (a[1] ∧ b[3]) ∨ (a[2] ∧ (b[3] ∨ b[2])) ∨ (a[3] ∧ (b[3] ∨ b[2] ∨ b[1]))

determines for n = 4 if the number of leading zeros is less than n− 1 or not.

Signed overflow detection

r = a∗b the resulting bit vector of length n+1. Recall that L(a) denotes the

number of leading bits for bit-vector a. For signed multiplication an overflow

occurs if and only if L(a) + L(b) < n or r[n]⊕ r[n− 1] [SGBB00].

The number of leading bits can be detected as follows. We compute a′

and b′ where each bit-vector is logically XOR-ed with the sign bit. For ex-

ample, if a = 11100101, then a′ is 00011010. As a result of this computation

a′ and b′ have now leading zeros only, so we can use almost the same exami-

nation principle as in the unsigned case. Figure 3.9 shows the principle how

Boolector detects if the number of leading bits is less than n or not.

Again, if we reach the constant 1 in the graph, then we know that the sum

of leading bits is less than n and we have detected an overflow. However, if

we reach the constant 0, then we know that the sum of leading bits is greater

than or equal n. In this case, we have to examine r[n]⊕ r[n− 1] in order to

3.5. SYMBOLIC OVERFLOW DETECTION 83

1

1

0 0

1

... ...

a′[n− 2] b′[1]

a′[n− 3] b′[2]

a′[1] b′[n− 2]

Figure 3.9: Leading bits examination principle. The examination starts at
a[n − 2] and moves either right or down. Dashed edges are taken if the
considered bit is zero, and solid edges otherwise.

84 CHAPTER 3. BOOLECTOR

determine if an overflow may occur or not.

This examination principle leads to the following formula which is inter-

nally used by Boolector to determine if the sum of leading bits is less than

n or not.
n−2
∨

i=1

(a′[i] ∧
i

∨

j=1

b′[n− j − 1])

For example (a′[1] ∧ b′[2]) ∨ (a′[2] ∧ (b′[2] ∨ b′[1])) determines for n = 4 if the

number of leading bits is less than n or not.

3.5.4 Division

Let a and b be two bit vectors of length n. In the context of signed division,

there is exactly one case where an overflow may occur. An overflow occurs if

and only if the smallest representable integer value is divided by −1. Note

that there is no case where an overflow occurs for unsigned division.

3.6 Conclusion

We presented Boolector, which is an efficient SMT solver for the quantifier-

free theories of bit-vectors and arrays. Boolector uses term rewriting, bit-

blasting for bit-vectors, and lemmas on demand for arrays. We discussed its

architecture, main concepts, implementation and optimization details, and

selected features. In particular, we discussed an optimization technique which

propagates unconstrained bit-vector and array variables, symbolic overflow

detection, and novel under-approximation refinement techniques that work

directly on the CNF layer.

Chapter 4

Testing and Debugging SMT

Solvers

SMT solvers are widely used as core engines in many applications. There-

fore, robustness and correctness are essential criteria. Current testing tech-

niques used by developers of SMT solvers do not satisfy the high demand

for correct and robust solvers, as our testing experiments show. To improve

this situation, we propose to complement traditional testing techniques with

grammar-based blackbox fuzz testing, combined with delta-debugging. We

demonstrate the effectiveness of our approach and report on critical bugs and

incorrect results which we found in current state-of-the-art SMT solvers for

bit-vectors and arrays.

4.1 Introduction

Many applications use Satisfiability Modulo Theories (SMT) solvers as core

decision engines. For example, SMT solvers are used to generate test cases,

to find bugs [BTV09, CDE08, CGP+06, TdH08, VTP09], and to verify sys-

tems [Bab08, BBC+06, HHK08, SJPS08, JES07, LQ08]. A crashing SMT

solver may lead to a crash of the application, or even worse, an incorrect

solver may lead to wrong results. For example, if an SMT solver concludes

unsat although the input formula is sat, a verification system may spuriously

85

86 CHAPTER 4. TESTING AND DEBUGGING SMT SOLVERS

conclude that an implementation respects its specification, i.e. defects are

missed.

We show that although there is a high demand for robustness and correct-

ness of SMT solvers, many state-of-the-art solvers were broken at the time

of our tests. They contained defects that led to crashes, or even worse, to in-

correct results where the solver concludes sat although the formula is unsat,

or vice versa. We demonstrate that many critical defects can be found by a

testing technique called grammar-based blackbox fuzz testing, and propose to

complement traditional testing approaches with this technique. Moreover,

we propose to integrate delta-debugging [Zel05] into the debugging process

in order to minimize failure-inducing SMT formulas.

4.2 Fuzzing

Fuzzing is a powerful testing technique which is typically used in the domains

of software security and quality assurance [SGA07, TDM08]. The main idea

of the original fuzzing approach is to test programs with random inputs in

order to detect security bugs, e.g. buffer overflows. Fuzz testing techniques

were already applied by software engineers around 1980. For example, a tool

called ”the monkey“ was developed to test the original Macintosh system. It

fed random events to the current application. It appeared as if the computer

was operated by an angry monkey [TDM08]. In [MKL+95], fuzz testing was

used to find bugs in UNIX tools.

The first tools were simple, used blackbox testing, i.e. testing was per-

formed against the interface without access to implementation details, and

had no knowledge of the expected input format. In the context of SMT

solvers we are typically not interested in fuzzing techniques that are unaware

of the input syntax. Although useful, such techniques would mainly test syn-

tax error handling routines of the parser. We would only scratch the surface

and would not be able to test deeper parts of the solver. However, we focus

on finding critical bugs such as crashes upon syntactically valid inputs, and

incorrect results.

Nowadays, various fuzzing tools are available [SGA07, TDM08]. More-

4.2. FUZZING 87

over, there is an ongoing research on whitebox fuzz testing tools, which are

a new generation of sophisticated fuzzers that use recent advances in sym-

bolic execution and dynamic test generation [GKL08, GLM08]. Whitebox

fuzzing is an interesting application for SMT solvers. However, we use fuzzing

techniques in order to test solvers. Although the whitebox fuzzing approach

seems promising for testing solvers, it has its limitations when it is used

for programs that expect highly structured inputs such as the SMT for-

mat [RT06]. Sophisticated and complicated techniques like grammar-based

whitebox fuzzing [GKL08] are necessary in order to use whitebox techniques

for testing deep parts of SMT solvers, e.g. error prone optimizations.

We propose to use grammar-based blackbox fuzzing in order to test SMT

solvers. A fuzzer randomly generates syntactically valid SMT formulas in

order to detect critical defects. Unlike grammar-based whitebox fuzzing,

grammar-based blackbox fuzzing is easy to implement and integrate, gen-

erates no false positives, and is impressingly effective in finding bugs that

traditional testing techniques miss. This is confirmed by our experiments in

section 4.4. Moreover, in contrast to fuzzing techniques such as [CH00], it

does not need any user specifications and can be fully automated.

4.2.1 Generating Random Bit-Vector Formulas

We use a layered approach for generating random formulas, similar to [Vid08].

In the following we focus on bit-vector formulas. However, the main concepts

and ideas can also be used in the context of other theories.

Although the main algorithm is rather simple, many details have to be

considered as the quantifier-free theory of fixed-size bit-vectors has many

different operators. While some of them use bit-vector arguments only, other

operators, e.g. extract, also use integer constants. Moreover, the operators

require different preconditions, e.g. equal bit-width of the operands, valid

index positions, etc., which have to be fulfilled. In contrast to [Vid08], we

also have to consider more types, i.e. unlike the BTOR format [BBL08], the

SMT-LIB format [RT06] distinguishes between type boolean and bit-vector

of bit-width one.

88 CHAPTER 4. TESTING AND DEBUGGING SMT SOLVERS

In principle, we structure a bit-vector formula into four layers: input,

main, predicate, and boolean. During the formula construction we maintain

a set of all nodes that have been created, including their types.

First, we generate the input layer with a random number of bit-vector

variables and constants. The bit-width is also selected randomly which makes

generating random bit-vector formulas more complicated than formulas that

contain natural numbers. We have to consider many different types as we do

not want to restrict all bit-vector terms to the same bit-width.

Second, we generate the main layer. We iteratively choose either a ran-

dom bit-vector operator1, or one of {=, distinct, ite}. Then, depending on

the arity of the operator, we randomly select operands from our set, gener-

ate the final node, and insert it into the set. The main problem in this step

is that the operands might have different bit-widths, but almost every bit-

vector operator requires them to be equal. We use the extension operators

zero extend and sign extend, and the extraction operator extract to solve

this problem. If the operands do not have the same bit-width, then we either

extend the ”smaller“ operand, or randomly select one possible sub-vector of

the ”larger“ operand.

In the main layer we are interested in bit-vector nodes only. However,

some operators, i.e. =, distinct, and bit-vector predicates, result in boolean

nodes. In order to convert them to bit-vector terms we use an if-then-else

wrapper. Assume t1 and t2 are bit-vector terms with the same bit-width, and

p is a bit-vector predicate. We convert the predicate p(t1, t2) into a bit-vector

term as follows:

(ite (p t1 t2) bv1[1] bv0[1])

If p(t1, t2) is true, we return the bit-vector constant one with bit-width one,

and zero otherwise. Hence, we can use wrapped predicates as inputs to bit-

vector operations. This technique aims to detect subtle bugs that are not

found by tests that use predicates in a boolean context only.

Third, we analogously generate the predicate layer. However, we restrict

our operator selection to =, distinct, and bit-vector predicates. Finally, we

1In the SMT-LIB there are currently 35 bit-vector operators in QF BV.

4.2. FUZZING 89

generate the boolean layer by randomly combining boolean nodes to one final

root. We iteratively select roots, i.e. boolean nodes without parents, from

our boolean layer, and combine them by a random boolean operator. We

continue this process until there is only one root left.

4.2.2 Bit-vector Arrays

Adding one-dimensional bit-vector arrays is straightforward. We extend our

algorithm for generating random bit-vector formulas as follows. First, we

add array variables to the input layer. Then, during the process of building

the main layer, we also build an array layer by using write(a, i, e), where

a is an array, i a bit-vector index and e a bit-vector value. The result of

write(a, i, e) is an array where the value at position i has been overwritten

by e. All other elements of a remain the same. We select a, i, and e randomly

from the terms that have already been created. If the bit-widths of i and e

are incompatible to a, we use the techniques described earlier.

Moreover, while we are building the main bit-vector and array layer we

also create reads by using read(a, i), where a is an array and i is a bit-vector

index. Analogously to write(a, i, e), we select a and i randomly from the

terms that have been created before, and either extend or slice i if necessary.

Interleaving the phases of creating regular bit-vector terms, reads and

writes ensures that reads are also used as read indices, write indices, write

elements, and also as operands of regular bit-vector operations. Moreover,

nested writes may be created. Generating such formula structures aims to

find subtle bugs in array algorithms that use abstraction refinement loops

such as [BB09a, Gan07] where reads are internally replaced by fresh variables.

If we want to support the extensional theory of arrays where we can

compare arrays in addition to array elements, then we can extend the main

bit-vector layer with array equalities, encoded as bit-vectors. Moreover, array

equalities may also be added to the boolean layer.

90 CHAPTER 4. TESTING AND DEBUGGING SMT SOLVERS

4.3 Delta-Debugging SMT Formulas

After we have found failure-inducing inputs, we typically want to minimize

them. Delta-debugging techniques [Art08, CH00, MS06, Zel05, ZH02] au-

tomatically simplify and isolate failure-inducing inputs by using a divide-

and-conquer strategy. Typically, minimized inputs speed up debugging as

non-irrelevant input parts do not have to be considered. Moreover, large

inputs may be practically infeasible to debug.

A delta-debugger repeatedly calls the program with simplified variants of

the failure inducing input. If the program shows the same observable behav-

ior, e.g. returns the same exit code or prints out the same error message, the

delta-debugger continues with the simplified input, and backtracks otherwise.

Generally, delta-debugging does not generate a minimal failure-inducing

input. However, this feature is rarely needed in practice. Typically, the goal

of delta-debugging is to reduce the input as much and as fast as possible.

It is not feasible for engineers to wait for a delta-debugging tool that needs

days or even weeks to terminate. Therefore, we use a small and simple set of

simplifications which allows fast delta-debugging while generating very small

failure-inducing inputs. This is also confirmed by our experiments in Tab. 4.3

and Tab. 4.4.

In the context of SMT we have highly structured inputs, and type in-

formation. As Zeller’s original delta-debugging technique [Zel05] does not

explicitly use any knowledge of the input structure, we use a variant of hi-

erarchical delta-debugging [MS06]. Hierarchical delta-debugging techniques

have also been proposed for BTOR [Vid08]. We use the knowledge of for-

mula structures and types to speed up the delta-debugging process, and to

minimize inputs even further.

First of all, we represent an SMT formula as DAG with one boolean root.

Typically, SMT formulas are layered, e.g. there is a boolean layer on top of the

formula. We use the knowledge of a boolean layer to prune large irrelevant

parts of the input up front. We iteratively try to replace the current root

by one of its boolean children, i.e. we perform an eager and greedy search

through the boolean layer.

4.3. DELTA-DEBUGGING SMT FORMULAS 91

Then, we perform further term-level simplifications, driven by a breath-

first-search. Whenever new nodes are created, we insert them into a queue for

further simplifications. We try to substitute each node either by the constant

zero, one, or by one of its children, but only if the types of the current node

and its child match. Note that this is not possible for bit-vector predicates,

as they have a boolean type while their children have bit-vector types. If one

child is a chain of unary operator applications, or writes, we try to skip it,

i.e. we try to replace the current node by the node at the end of the chain. By

using this technique we may immediately prune irrelevant operator chains,

e.g. deeply nested writes.

Finally, after all nodes have been processed, we try to find a new root

again. Boolean nodes may not only occur within the boolean layer, but also

deeper inside the formula, used as conditions in if-then-else operators. We

expect that the input formula has now been simplified significantly by the

delta-debugging process. Therefore, we can try to substitute the current root

by arbitrary boolean nodes that occur deeper in the formula. In this way we

may minimize the formula even further and eliminate irrelevant if-then-else

nodes in upper formula layers.

4.3.1 Delta-Debugging Crashes

Typically, fuzz testing leads to a high number of system crashes, i.e. the

program terminates without providing a result. This is confirmed by our

experiments in section 4.4. The randomness of the input is responsible for

triggering statements that have not been tested before. Executing untested

statements may lead to erroneous internal states, and thus, crashes.

In the context of SMT solvers, we have observed that crashes typically

occur almost immediately after starting a solver. We conjecture that this

observation also holds for other kinds of solvers that use complex and er-

ror prone optimization techniques, e.g. SAT solvers. This is confirmed by

preliminary internal experiments on fuzzing SAT solvers. We can use the

“early-crash” observation to improve the performance of delta-debugging.

First, we introduce the concept of timeouts. During delta-debugging,

92 CHAPTER 4. TESTING AND DEBUGGING SMT SOLVERS

each call to the solver is executed using a time limit. Whenever the solver

exceeds its limit, we treat this case as if the simplification of the failure-

inducing input has failed, and backtrack. Note that using timeouts during

delta-debugging can also be useful for other kind of defects. For example,

it can be used for delta-debugging failure-inducing formulas that lead to an

infinite loop within the solver. We refer the reader to our experiments in

section 4.4.2 where we provide a discussion of delta-debugging SMT solvers

that do not always terminate.

Whenever we want to delta-debug a formula that leads to a crash, we

typically set the time limit to a few seconds above the time which leads to a

crash on the original formula. Using timeouts may heavily speed up delta-

debugging formulas that are hard to decide. For example, assume we want

to delta-debug a complex SMT formula. Whenever a specific sub-formula

structure occurs, the solver crashes almost immediately. However, whenever

delta-debugging simplifications destroy this sub-formula structure, the solver

works correctly and may run for days. By using timeouts we can backtrack

simplifications that do not lead to a crash almost immediately, and thus,

speed up delta-debugging significantly, i.e. the delta-debugger may terminate

with a small failure-inducing input already within a few minutes.

4.4 Experiments

4.4.1 Bit-Vector Theories

To evaluate the effectiveness of our approach, we fuzz-tested and delta-

debugged publicly available state-of-the-art SMT solvers with our fuzzer

FuzzSMTBV and our delta-debugger DeltaSMT. The failure-inducing inputs

and delta-debugged results are publicly available2. Our SMT Tools, includ-

ing FuzzSMTBV and DeltaSMT are publicly available as well3.

We ran our experiments under Ubuntu Linux on an Intel Core 2 Quad

machine with 2.66 GHz and 8 GB RAM. Our fuzz testing framework used

2www.fmv.jku.at/brummayer/fuzz-dd-smt.tar.7z
3www.fmv.jku.at/software/index.html#smttools

4.4. EXPERIMENTS 93

each of the four cores for testing. Our delta-debugging experiments were

performed on the same machine, but were not run simultaneously.

The process of testing SMT solvers was rather complicated and complex.

At the time of our tests, only two solvers, Boolector [BB09a] and Z3 [dMB08],

supported all bit-vector operators of the SMT-LIB [BRST08] without crash-

ing. Therefore, we used Boolector as a filter to rewrite high-level operators,

e.g. smod, into a combination of supported low-level base operators accord-

ing to [BBL08]. Although we had to restrict the tests to at most 11 out of 35

bit-vector operators, we found an impressive number of bugs. We conjecture

that we would have found even more bugs if we had been able to use the

full set of operators. This is also confirmed by further unpublished experi-

ments. In Appendix B we list the most interesting error messages that we

encountered during our fuzzing experiments.

For the quantifier-free theory of bit-vectors QF BV we tested the following

solvers: Beaver [JLS09] 1.1-RC1, Boolector [BB09a] 1.0 and 1.1, a devel-

opment version of CVC3 [BT07] 1.5 (downloaded April 29th, 2009), Math-

SAT [BCF+07] 4.2.3, Spear [Bab08] 2.7 with SMT2SF 1-9, Sword [WFG+07]

from SMT-COMP’08 [BDOS08] and an unstable version of OpenSMT [BS08].

Moreover, we tested Z3 [dMB08] 1.2 and Z3 from SMT-COMP’08 [BDOS08].

The results are summarized in Tab. 4.1.

Note, the current versions of CVC3 and OpenSMT do not support bit-

vector division. Moreover, we could not test STP for bit-vector formulas

as we encountered serious problems when we tried to use CVC3 to convert

SMT formulas to CVC format which is needed by STP. However, we could

test STP for a more restricted bit-vector logic combined with arrays. These

results are shown in Tab. 4.2.

We detected incorrect results, i.e. solvers report sat although the status

is unsat or vice versa, in the following way. First, we compared the result

of each solver on each formula to the result of Boolector 0.4 and Z3 from

SMT-COMP’08. If Boolector and Z3 agreed on the result, but the tested

solver reported the opposite, we collected this formula.

Then, we inspected the collected formulas. Beaver claims that one for-

mula is sat although other solvers report unsat. However, Beaver crashes with

94 CHAPTER 4. TESTING AND DEBUGGING SMT SOLVERS

an assertion failure when asked to provide a model. For CVC3 we could use

its built-in on-the-fly proof checker to confirm nearly all cases where CVC3

wrongly concludes unsat. Moreover, most of the remaining wrong answers

are caused by CVC3’s query preprocessor. After disabling preprocessing,

CVC3 reports the expected answer in most of the cases. For MathSAT we

used the command line argument -smtcomp as it is documented in the Math-

SAT 4 invocation guide on their web page. However, we found out that this

argument is responsible for many incorrect results where MathSAT spuri-

ously reports unsat. If we use -input=smt, tsolver=bv and -solve instead

of -smtcomp, MathSAT reports the expected results in almost every case.

Similarly, Spear reports the expected results when common sub-expression

elimination is turned off via --cse 0. The remaining incorrect results were

confirmed by the majority voting principle where we used at least Boolector

1.1, Z3 from SMT-COMP’08 and another solver where error prone optimiza-

tions were turned off.

For the quantifier-free theory of bit-vectors, arrays and uninterpreted

functions QF AUFBV, we tested the following solvers: Boolector [BB09a] 1.0

and 1.1, a development version of CVC3 [BT07] 1.5 (downloaded April 29th,

2009), STP [GD07] 0.1 (November 18th, 2008), and Z3 [dMB08] 1.2 and from

SMT-COMP’08 [BDOS08]. The results are summarized in Tab. 4.2.

Finally, we delta-debugged failure-inducing formulas found for QF BV. Be-

fore delta-debugging, we semi-automatically divided them into bug classes

with a limit of 50 formulas for each class. The results are shown in Tab. 4.3

and Tab. 4.4. We encountered only a few non-deterministic bugs that we

were not able to delta-debug as they were not always reproducible. Incorrect

results were delta-debugged as follows. Instead of calling the incorrect solver

directly, the delta-debugger calls a shell script during delta-debugging. The

script calls three trusted solvers and the incorrect solver. It returns 1 only if

the three trusted solvers agree on the satisfiability status and the incorrect

solver reports the opposite, and 0 otherwise.

Note that we did not delta-debug failure-inducing formulas found for

QF AUFBV as the inputs found for STP seemed to trigger non-deterministic

behavior, and delta-debugging crashes for CVC3 would mainly consider de-

4.4. EXPERIMENTS 95

no-div guard-div
solver crash incorrect crash incorrect

Beaver 1.1 rc1 0 0 12430 1
Boolector 1.0 0 0 0 0
Boolector 1.1 0 0 0 0
CVC3 1.5 902 8 - -
MathSAT 4.2.3 0 113 2097 83
OpenSMT 19871 8 - -
Spear 2.7 0 6 3577 71
Sword smt-comp 0 1 0 0
Z3 1.2 0 0 2264 0
Z3 smt-comp 0 0 0 0

Table 4.1: Experimental results of fuzzing bit-vector solvers. The file size of
random bit-vector SMT formulas typically ranges from a few KB to 1 MB.
The results are divided into bit-vector formulas without division operators
(no-div) and formulas with “guarded” division (guard-div). Moreover, the
results show the number of crashes, i.e. solver terminates in an unexpected
way without providing a result, and number of incorrect results, i.e. solver
reports unsat although formula is sat, or vice versa. Guarded division adds
top-level constraints that rule out models where division by zero occurs.
This guarantees that the semantics of dividing by zero does not influence
the satisfiability status of the formula. We used a maximum bit-width of
16 for no-div formulas and tested each solver with the same set of 23100
randomly generated SMT formulas in three hours. For guard-div formulas
that may additionally contain bvudiv and bvurem, we used a maximum bit-
width of 10, as bit-vector division significantly slowed down some solvers. In
this category we tested 23100 formulas in about one hour.

fects in bit-vector parts, which is what we already consider in our delta-

debugging experiments for QF BV in Tab. 4.3 and Tab. 4.4. However, in order

to evaluate the effectiveness of our approach on formulas that contain arrays,

we provide delta-debugging experiments for QF AX formulas in Tab. 4.8.

4.4.2 Non-Bit-Vector Theories

We provide additional experimental results in order to show that our testing

and debugging approaches are not limited to bit-vector theories. In partic-

96 CHAPTER 4. TESTING AND DEBUGGING SMT SOLVERS

solver crash
CVC3 1.5 9812
STP 0.1 24

Table 4.2: Experimental results of fuzzing bit-vector and array solvers. The
formulas contain bit-vector arrays, reads and writes, but no equalities be-
tween arrays as STP does not support them. We tested each solver with the
same set of 12000 randomly generated formulas in about two hours. In order
to be able to use CVC3 as filter to test STP, we had to restrict the set of
operators which was used for the results in Tab. 4.1 even further, i.e. the
formulas neither contain division nor shift operators. For Boolector and Z3
we could not find any defects. Generally, no incorrect results were found, but
serious internal crashes. An analysis of the error messages showed that some
crashes were caused by defects in the implementation of decision procedures.

no-div
solver f c t s r

CVC3 1.5 139 9 172 2429 98%
MathSAT 4.2.3 50 1 10 611 97%
OpenSMT 154 4 5 492 96%
Spear 2.7 6 1 5 401 96%
Sword smt-comp 1 1 4 135 99%

Table 4.3: First experimental results of delta-debugging bit-vector solvers.
The SMT formulas do not contain any division operators. The columns
labelled f and c represent the number of formulas, and the number of bug
classes. The number of classes is a rough approximation for the number
of different solver defects. The columns t, s, and r show the average delta-
debugging time in seconds, the average file size in bytes after delta-debugging,
and the average file size reduction. We encountered some statistical outliers.
The median of time t is 2 seconds for OpenSMT and 14 seconds for CVC3.
The median of file size after delta-debugging s is 918 bytes for CVC3.

4.4. EXPERIMENTS 97

guard-div
solver f c t s r

Beaver 1.1 rc1 469 12 5 319 98%
MathSAT 4.2.3 190 5 58 3709 76%
Spear 2.7 100 2 4 228 99%
Z3 1.2 50 1 734 254 99%

Table 4.4: Second experimental results of delta-debugging bit-vector solvers.
The SMT formulas contain division operators that are guarded. The columns
labelled f and c represent the number of formulas, and the number of bug
classes. The number of classes is a rough approximation for the number
of different solver defects. The columns t, s, and r show the average delta-
debugging time in seconds, the average file size in bytes after delta-debugging,
and the average file size reduction. We encountered some statistical outliers.
The median of time t is 648 seconds for Z3. The medians for time t, file size
s after delta-debugging, and reduction in file size r are 13 seconds, 715 bytes
and 91% for MathSAT.

ular, we provide experimental results for the quantifier-free theory of arrays

with indices and elements of uninterpreted sorts (QF AX), and the quantifier-

free theory of integer difference logic (QF IDL). The failure-inducing inputs

and delta-debugged results are publicly available4.

We developed a new fuzzing tool called FuzzSMT in order to support non-

bit-vector theories as well. It adapts the main ideas of our previous fuzzing

tool FuzzSMTBV to non-bit-vector theories which is straight-forward. FuzzSMT

can generate random formulas in the following SMT-LIB theories [BRST08]:

QF A, QF AUFBV, QF AUFLIA, QF AX, QF BV, QF IDL, QF LIA, QF LRA, QF NIA,

QF NRA, QF RDL, QF UF, QF UFBV, QF UFIDL, QF UFLIA, QF UFLRA,QF UFNIA,

QF UFNRA, QF UFRDL, AUFLIA, AUFLIRA and AUFNIRA.

In contrast to our previous fuzzer FuzzSMTBV, our new fuzzer FuzzSMT

can handle almost all first-order theories that are supported by the SMT-

LIB [BRST08] at the moment. It can handle natural and rational numbers,

uninterpreted functions, predicates and sorts, and quantifiers. Supported

theories include arrays with indices and elements of uninterpreted sorts,

4www.fmv.jku.at/brummayer/fuzz-dd-smt2.tar.7z

98 CHAPTER 4. TESTING AND DEBUGGING SMT SOLVERS

with or without extensionality (QF A, QF AX), difference logic with or without

uninterpreted functions (QF IDL, QF UFIDL, QF RDL, QF UFRDL), linear arith-

metic with or without uninterpreted functions (and arrays) (QF LIA, QF LRA,

QF UFLIA, QF UFLRA, QF AUFLIA), non-linear arithmetic with or without un-

interpreted functions (QF NIA, QF NRA, QF UFNIA, QF UFNRA), and complex

first-order theories such as AUFLIRA and AUFNIRA which, in essence, contain

quantifiers, linear or non-linear arithmetic, and arrays of arrays with integer

indices and real values.

For our experiments we used the same hardware and settings as for the

previous bit-vector experiments. We ran our experiments under Ubuntu

Linux on an Intel Core 2 Quad machine with 2.66 GHz and 8 GB RAM.

Again, our fuzz testing framework used each of the four cores for testing.

Our delta-debugging experiments were performed on the same machine, but

were not run simultaneously.

For the quantifier-free theory of integer difference logic QF IDL we used

our fuzzer FuzzSMT in order to test the following solvers: Barcelogic SMT

solver [BNO+08b] from SMT-COMP’08 [BDOS08], a development version

of CVC3 [BT07] 1.5 (downloaded June 24th, 2009), MathSAT [BCF+07]

4.2.5, Sateen [KJS08] from SMT-COMP’08 [BDOS08], Yices [DdM06] 1.0.21

and Z3 [dMB08] from SMT-COMP’08 [BDOS08]. The results are shown in

Tab. 4.5. As in the case of bit-vector theories, we found an impressive number

of errors and incorrect results. This confirms that our fuzzing techniques are

not limited to bit-vector theories.

Incorrect results were fully automatically classified by the majority vot-

ing principle with a minimum voting majority of 66 percents, i.e. more than

66 percents of the solvers that report a result have to agree on the satisfia-

bility status in order to classify solvers reporting the opposite as incorrect.

Instances on which less than 66 percents of the majority agree are classified

as unresolved. In 36 out of 267 cases the voting majority was 66 percents. In

the remaining 231 cases the voting majority was 83 percents. Unresolved dis-

crepancies, i.e. the solvers disagree on the satisfiability status but the voting

majority is less than 66 percents, did not occur. Note that the majority vot-

ing principle does not guarantee that results classified as incorrect are indeed

4.4. EXPERIMENTS 99

solver error incorrect
Barcelogic smt-comp 20 0
CVC3 1.5 0 0
MathSAT 4.2.5 72 19
Sateen smt-comp 190 229
Yices 1.0.21 0 0
Z3 smt-comp 0 19

Table 4.5: Experimental results of fuzzing integer difference logic solvers.
The results show the number of errors, i.e. solver terminates in an unexpected
way without providing a result, or it does not seem to terminate. Moreover,
we show the number of incorrect results, i.e. solver reports unsat although
formula is sat, or vice versa. We tested each solver with the same set of
24070 randomly generated SMT formulas. Finally, the overall testing time
was about 35 minutes.

incorrect. From a theoretical point of view, they could also be correct al-

though the majority of the other solvers report the opposite result. However,

our fuzzing experience suggests that this case is unlikely to happen.

For each SMT solver call we used a time limit of 60 seconds. Only Barce-

logic exceeded the time limit in some cases. We inspected some samples and

found out that although the other solvers immediately terminate on these

small benchmarks, Barcelogic does not terminate, even after hours. There-

fore, we classified these cases as errors.

The errors reported for Sateen are mainly segmentation faults and aborts.

In two cases Sateen printed out “UNSAT” followed by a line reporting “un-

known”. In one case Sateen printed out “UNSAT“, however, followed by a

line reporting “sat”. Moreover, Sateen sometimes showed non-deterministic

behavior and reported unknown in 372 cases. We did not classify these cases

as errors although the formulas are decidable. Finally, the errors reported

for MathSAT consist of segmentation faults.

For the extensional quantifier-free theory of arrays with indices and el-

ements of uninterpreted sorts QF AX, we used our fuzzer FuzzSMT in order

to test the following solvers: Barcelogic SMT solver [BNO+08b] from SMT-

COMP’08 [BDOS08], a development version of CVC3 [BT07] 1.5 (down-

100 CHAPTER 4. TESTING AND DEBUGGING SMT SOLVERS

solver error incorrect
Barcelogic smt-comp 25 54
CVC3 1.5 0 0
Z3 smt-comp 0 0

Table 4.6: Experimental results of fuzzing solvers for arrays with indices
and elements of uninterpreted sorts. The results show the number of errors,
i.e. solver terminates in an unexpected way without providing a result, or
it does not seem to terminate. Moreover, we show the number of incor-
rect results, i.e. solver reports unsat although formula is sat, or vice versa.
We tested each solver with the same set of 24030 randomly generated SMT
formulas. The overall testing time was about 40 minutes.

loaded June 24th, 2009) and Z3 [dMB08] from SMT-COMP’08 [BDOS08].

The results are shown in Tab. 4.6.

We used a timeout of 60 seconds. As expected, we found errors and in-

correct results. Again, incorrect results were fully automatically classified

by the majority voting principle with a minimum voting majority of 66 per-

cents. Unresolved discrepancies, e.g. two solvers disagree while the third

solvers crashes, did not occur.

Analogously to the experimental results for QF IDL, we found some failure-

inducing formulas on which Barcelogic does not seem to terminate. However,

we found other errors as well. On three instances Barcelogic terminates im-

mediately without printing out a result. Moreover, we found two segmenta-

tion faults and two assertion failures.

We extended our delta-debugger DeltaSMT. As our delta-debugging al-

gorithm for SMT formulas, presented in section 4.3, is generic in the sense

that it does not depend on a specific theory, we did not have to change it.

The main work was to extend the parser and the type universe. The results

for QF IDL are shown in Tab. 4.7 and the results for QF AX are shown in

Tab. 4.8. Our experimental results clearly confirm the effectiveness of our

delta-debugging approach on non-bit-vector theories.

Delta-debugging Barcelogic was problematic as there are formula struc-

tures on which Barcelogic does not seem to terminate. This causes the follow-

ing two problems. First, we must find a new strategy in order to delta-debug

4.4. EXPERIMENTS 101

solver f c t s r

Barcelogic smt-comp 20 1 29 979 55%
MathSAT 4.2.5 69 2 1 191 92%
Sateen smt-comp 103 4 3 1231 46%
Z3 smt-comp 17 1 3 614 71%

Table 4.7: Experimental results of delta-debugging integer difference logic
solvers. The columns labelled f and c represent the number of formulas, and
the number of bug classes. The columns t, s, and r show the average delta-
debugging time in seconds, the average file size in bytes after delta-debugging,
and the average file size reduction. Note that due to non-deterministic be-
havior a few failures were not always reproducible and could therefore not
be delta-debugged. We had the following statistical outliers. The median of
reduction in file size r is 73% for Barcelogic and 92% for Z3. Moreover, the
median of file size after delta-debugging s is 619 bytes for Barcelogic, 176
bytes for MathSAT, 879 bytes for Sateen and 174 bytes for Z3.

failure-inducing formulas on which a solver does seem to terminate. Sec-

ond, if we perform delta-debugging with respect to other failure-inducing

formulas, i.e. formulas that lead to a segmentation fault, it may happen that

the result of a simplification step is a formula on which the solver does not

terminate. Thus, the overall delta-debugging algorithm may not terminate

anymore. We solved both problems with the concept of timeouts.

In order to solve the first problem, we wrote a shell script that executes

Barcelogic with a time limit. If Barcelogic exceeds the time limit we return

1, and 0 otherwise. This script is called by the delta-debugger after each

simplification step in order to find out whether the simplified formula still

triggers an infinite loop within the solver or not. In this way, we delta-

debugged the 20 QF IDL instances shown in Tab. 4.7. We found out that a

time limit of 2 seconds is enough as the formulas and its simplifications were

rather easy to solve, i.e. a timeout of 2 seconds is very likely to be adequate.

In order to solve the second problem, we used the timeout feature of

our delta-debugger DeltaSMT. The delta-debugger can be configured to use

a time limit for each simplification call. If the solver exceeds this limit, the

delta-debugger treats this case as if the current simplifications has failed,

102 CHAPTER 4. TESTING AND DEBUGGING SMT SOLVERS

solver f c t s r

Barcelogic smt-comp 75 6 73 3286 81%

Table 4.8: Experimental results of delta-debugging Barcelogic for QF AX for-
mulas. The columns labelled f and c represent the number of formulas, and
the number of bug classes. The columns t, s, and r show the average delta-
debugging time in seconds, the average file size in bytes after delta-debugging,
and the average file size reduction. We encountered the following statistical
outliers. The median of time t is 30 seconds and the median of reduction in
file size r is 91%. Moreover, the median of file size after delta-debugging s is
1515 bytes.

i.e. the current simplified formula does not trigger the bug anymore, and

backtracks. In this way we were able to delta-debug failure-inducing inputs

that trigger assertion failures, segmentation faults and immediate termina-

tions without providing a result, although the solver might not terminate

after each simplification step. For example, assume we delta-debug a de-

fect such as a segmentation fault. Whenever the delta-debugger simplified

the current formula in such a way that Barcelogic does not terminate, then

Barcelogic exceeds the time limit, the delta-debugger treats this case as a

simplification on which the original kind of defect,i.e. a segmentation fault,

does not occur anymore, and backtracks. With these two concepts of time-

outs we were able to delta-debug all kind of defects found for Barcelogic in

QF AX. The results are shown in tableddax.

4.5 Conclusion

The goal of our experiments is to show that traditional testing techniques

obviously do not suffice to fulfill the high demand for robustness and correct-

ness of SMT solvers. SMT solvers contain a lot of error prone optimizations

that need to be heavily tested. Although fuzz testing is not a complete solu-

tion for this problem, i.e. it can only find bugs but cannot prove the absence,

we have shown that it is a useful ”tool in the toolbox“ which can find many

bugs in state-of-the-art SMT solvers that traditional testing techniques ob-

4.5. CONCLUSION 103

viously miss. Our first experimental evaluations showed the effectiveness of

our approaches for bit-vector theories. Our additional experiments for non-

bit-vector theories confirm that our fuzzing and delta-debugging techniques

are not limited to bit-vector theories and, moreover, can be used to debug

solvers that may not terminate on every input.

We conclude that fuzz testing in combination with delta-debugging is an

effective approach which can be easily integrated in the development process

of SMT solvers in order to increase robustness and correctness. Moreover, we

believe that this combination can be of great value in other domains as well.

Blackbox fuzzing is able to find many defects, even without any knowledge

of implementation details. It is therefore a reasonable conjecture that using

knowledge of these details in a whitebox fuzzing approach may be even more

successful in finding more, or more subtle, defects.

104 CHAPTER 4. TESTING AND DEBUGGING SMT SOLVERS

Chapter 5

Conclusion

The problem statement of this thesis is to design, implement, test, and debug

an efficient SMT solver for the extensional theory of arrays, combined with

bit-vectors. Each chapter of this thesis addressed different aspects of this

problem. Detailed experimental evaluations confirmed the success of our

main approaches.

Chapter two addressed the theoretical development of a novel and effi-

cient decision procedure for the extensional quantifier-free theory of arrays.

We discussed the decision procedure from a theoretical point of view, i.e. we

provided a complexity analysis and proofs, but also discussed implementa-

tion and optimization details. Experimental evaluations clearly showed the

effectiveness of our novel decision procedure.

Chapter three focused on the architectural design of an efficient SMT

solver, called Boolector, and discussed selected optimization techniques and

features such as symbolic overflow detection, propagating unconstrained vari-

ables, and under-approximation techniques for bit-vectors and reads on bit-

vector arrays. An experimental analysis of our under-approximation tech-

niques showed a speed-up for Boolector on satisfiable instances, which is

in particular promising if Boolector is run on instances that are expected

to be satisfiable. Moreover, the success of Boolector at the SMT competi-

tions [BDOS08, BDOS09] in 2008 and 2009 confirms the overall success of our

techniques. In the SMT competitions 2008 and 2009, Boolector clearly won

105

106 CHAPTER 5. CONCLUSION

the division of the quantifier-free theory of bit-vectors, arrays and uninter-

preted functions QF AUFBV. Moreover, it won the division of the quantifier-free

theory of bit-vectors QF BV in 2008 and achieved the second place in 2009.

In chapter four we addressed the neglected problem of testing and de-

bugging SMT solvers. In particular, we showed that most state-of-the-art

SMT solvers were broken at the time of our tests. They contained defects

that lead to crashes and incorrect results. An experimental analysis clearly

showed that our fuzzing techniques were able to find many bugs that tra-

ditional testing techniques were obviously not able to find. Moreover, we

showed that our generic delta-debugging techniques were able to efficiently

minimize failure-inducing formulas, even in cases where SMT solvers do not

seem to terminate.

In contrast to other scientific publications on SMT, where theoretical as-

pects are presented solely, this thesis provides implementation and optimiza-

tion details. Confirmed by our experimental results of testing SMT solvers,

we think that more papers should be published on practical aspects of SMT

solver development such as testing, debugging and providing implementation

details. Theoretical decision procedures, although interesting and beautiful

from a theoretical point of view, are hardly useful if we are not able to imple-

ment them efficiently and correctly. More research has to be done in order

to attack these problems.

5.1 What’s next?

There are various directions that seem to be promising for the SMT com-

munity. First of all, as nowadays desktop computers have multiple cores,

it sounds straight-forward to develop concurrent solvers. However, the is-

sue is not as straight-forward as one might expect. At the moment, the

most successful approach is a portfolio-based approach as implemented in

ManySAT [HJS09]. Multiple SAT solvers with different algorithms and

heuristics are run in parallel. To improve performance, learned clauses are

propagated. In [WHdM09], Wintersteiger et al. adapted this approach to

SMT. However, it is still unclear if this portfolio-based approach is indeed

5.1. WHAT’S NEXT? 107

the best approach. More research is needed in order to understand parallel

SAT and SMT solving techniques. In particular, more research has to be done

on analyzing the trade-off between parallel solving and cache performance,

which is a critical aspect in overall solving time. Moreover, we suggest that

also non-DPLL based approaches should be considered. The predominant

focus on DPLL-based approaches may lead to the effect that other efficient

parallel solving techniques are not discovered. Nevertheless, as the number

of cores is steadily increasing, parallel SAT and SMT seem to be interesting

and promising approaches.

Craig interpolants are a promising research direction for SMT. McMil-

lan introduced propositional interpolants [McM03] in order to perform un-

bounded symbolic model checking. Recently, research focuses on comput-

ing theory-specific interpolants [FGG+09, CGS09, GKT09, KV09, CGS08,

KW07, KMZ06, YM05, McM04] in order to enable and improve formal veri-

fication techniques. Interesting aspects of future research on interpolants are

the support of further theories, efficient interpolation generation algorithms,

and interpolant minimization.

Due to the limitation of the Nelson-Oppen Framework [NO79], SMT

solvers typically support only a limited form of quantifier reasoning. Re-

cent research on quantifier handling [GdM09, GBT07] tries to close this gap.

Efficient quantifier reasoning has great potential as it enables more complex

verification tasks. Interesting aspects of future research are the support of

more complex theories that support quantifiers, but are still decidable, and

to improve the overall performance of quantifier reasoning.

Finally, there is still great potential in developing and optimizing efficient

decision procedures for various theories of interest. We hope that we can find

more powerful decision procedures and optimization techniques in the future.

It will be exciting to see the (hopefully) never-ending progress of the SMT

community in the next years.

108 CHAPTER 5. CONCLUSION

Bibliography

[Ack54] W. Ackermann. Solvable Cases of the Decision Problem. Stud-

ies in Logic and the Foundations of Mathematics. North-

Holland, 1954.

[Art08] C. Artho. Iterative Delta Debugging. In Proceedings of the 4th

Haifa Verification Conference (HVC). Springer-Verlag, 2008.

[Bab07] D. Babić. SPEAR Modular Arithmetic Format Specifi-

cation - Version 1.0 - Revision 1.7, December 21th 2007.

www.cs.ubc.ca/~babic/doc/spear modarith.pdf.

[Bab08] D. Babić. Exploiting Structure for Scalable Software Verifica-

tion. PhD thesis, University of British Columbia, Vancouver,

Canada, 2008.

[Bar03] C. Barrett. Checking Validity of Quantifier-Free Formulas in

Combinations of First-Order Theories. PhD thesis, Stanford

University, 2003.

[BB04] C. Barrett and S. Berezin. CVC Lite: A New Implementation

of the Cooperating Validity Checker. In Proceedings of the

16th International Conference on Computer Aided Verification

(CAV), pages 515–518. Springer-Verlag, 2004.

[BB06] R. Brummayer and A. Biere. Local Two-Level And-Inverter

Graph Minimization without Blowup. In Proc. MEMICS’06,

pages 32–38. Faculty of Information Technology, Brno Univer-

sity, 2006.

109

110 BIBLIOGRAPHY

[BB07] R. Brummayer and A. Biere. C32SAT: Checking C Expres-

sions. In Proceedings of the 19th International Conference on

Computer Aided Verification (CAV), pages 294–297. Springer-

Verlag, 2007.

[BB08a] A. Biere and R. Brummayer. Consistency Checking of All

Different Constraints over Bit-Vectors within a SAT-Solver.

In Proceedings of the 8th International Conference on Formal

Methods in Computer-Aided Design (FMCAD), pages 223–226.

IEEE, 2008.

[BB08b] R. Brummayer and A. Biere. Lemmas on Demand for the Ex-

tensional Theory of Arrays. In Proceedings of the joint Work-

shops of the 6th International Workshop on Satisfiability Mod-

ulo Theories and the 1st International Workshop on Bit-Precise

Reasoning, pages 6–11. ACM, 2008.

[BB09a] R. Brummayer and A. Biere. Boolector: An Efficient SMT

Solver for Bit-Vectors and Arrays. In Proceedings of the 15th

International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems (TACAS), pages 174–177.

Springer-Verlag, 2009.

[BB09b] R. Brummayer and A. Biere. Effective Bit-Width and Under-

Approximation. In Proceedings of the 12th International Con-

ference on Computer Aided Systems Theory. Springer-Verlag,

2009.

[BB09c] R. Brummayer and A. Biere. Fuzzing and Delta-Debugging

SMT Solvers. In Proceedings of the 7th International Workshop

on Satisfiability Modulo Theories, 2009.

[BB09d] R. Brummayer and A. Biere. Lemmas on Demand for the Ex-

tensional Theory of Arrays. Journal on Satisfiability, Boolean

Modeling and Computation (JSAT), 6:165–201, 2009.

BIBLIOGRAPHY 111

[BBC+05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila,

S. Ranise, P. van Rossum, and R. Sebastiani. Efficient

Satisfiability Modulo Theories via Delayed Theory Combina-

tion. In Proceedings of the 17th International Conference on

Computer Aided Verification (CAV), pages 335–349. Springer-

Verlag, 2005.

[BBC+06] M. Bozzano, R. Bruttomesso, A. Cimatti, A. Franzen,

Z. Hanna, Z. Khasidashvili, A. Palti, and R. Sebastiani. En-

coding RTL Constructs for MathSAT: a Preliminary Report.

In Proceedings of the 3rd International Workshop on Pragmat-

ics of Decision Procedures in Automated Reasoning (PDPAR).

Elsevier, 2006.

[BBL08] R. Brummayer, A. Biere, and F. Lonsing. BTOR: Bit-Precise

Modelling of Word-Level Problems for Model Checking. In Pro-

ceedings of the joint Workshops of the 6th International Work-

shop on Satisfiability Modulo Theories and the 1st International

Workshop on Bit-Precise Reasoning, pages 33–38. ACM, 2008.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model

Checking without BDDs. In Proceedings of the 5th International

Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS), pages 193–207. Springer-Verlag,

1999.

[BCF+06a] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, A. Santu-

ari, and R. Sebastiani. To Ackermann-ize or Not to Ackermann-

ize? On Efficiently Handling Uninterpreted Function Symbols

in SMT (EUF ∪ T). In Proceedings of the 13th International

Conference on Logic for Programming, Artificial Intelligence,

and Reasoning (LPAR), pages 557–571. Springer-Verlag, 2006.

[BCF+06b] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Se-

bastiani. Delayed Theory Combination vs. Nelson-Oppen for

112 BIBLIOGRAPHY

Satisfiability Modulo Theories: A Comparative Analysis. In

Proceedings of the 13th International Conference on Logic for

Programming, Artificial Intelligence, and Reasoning (LPAR),

pages 527–541. Springer-Verlag, 2006.

[BCF+07] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna,

A. Nadel, A. Palti, and R. Sebastiani. A Lazy and Lay-

ered SMT(BV) Solver for Hard Industrial Verification Prob-

lems. In Proceedings of the 19th International Conference on

Computer Aided Verification (CAV), pages 547–560. Springer-

Verlag, 2007.

[BDOS08] C. Barrett, M. Deters, A. Oliveras, and A. Stump. SMT-Comp,

2008. www.smtcomp.org/2008.

[BDOS09] C. Barrett, M. Deters, A. Oliveras, and A. Stump. SMT-Comp,

2009. www.smtcomp.org/2009.

[BDS02] C. Barrett, D. Dill, and A. Stump. Checking Satisfiabil-

ity of First-Order Formulas by Incremental Translation to

SAT. In Proceedings of the 14th International Conference on

Computer Aided Verification (CAV), pages 236–249. Springer-

Verlag, 2002.

[BFG+05] C. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and

L. Zuck. TVOC: A Translation Validator for Optimizing Com-

pilers. In Proceedings of the 17th International Conference on

Computer Aided Verification (CAV), pages 291–295. Springer-

Verlag, 2005.

[BHvMW09] A. Biere, Marijn Heule, Hans van Maaren, and Toby Walsh,

editors. Handbook of Satisfiability. IOS Press, 2009.

[Bie08] A. Biere. PicoSAT Essentials. Journal on Satisfiability, Boolean

Modeling and Computation (JSAT), 4:75–97, 2008.

BIBLIOGRAPHY 113

[Bie09] A. Biere. The AIGER And-Inverter Graph (AIG) Format,

2009. fmv.jku.at/aiger.

[BKO+07] R. Bryant., D. Kroening, J. Ouaknine, S. Seshia, O. Strich-

man, and B. Brady. Deciding Bit-Vector Arithmetic with Ab-

straction. In Proceedings of the 13th International Conference

on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS), pages 358–372. Springer, 2007.

[BKO+09] R. Bryant, D. Kroening, J. Ouaknine, S. Seshia, O. Strichman,

and B. Brady. Deciding Bit-Vector Arithmetic with Abstrac-

tion. International Journal on Software Tools for Technology

Transfer (STTT), 11(2):95–104, 2009.

[BM07] A. Bradley and Z. Manna. The Calculus of Computation: De-

cision Procedures with Applications to Verification. Springer-

Verlag, 2007.

[BMS06] A. Bradley, Z. Manna, and H. Sipma. What’s Decidable About

Arrays? In Proceedings of the 7th International Conference

on Verification, Model Checking and Abstract Interpretation

(VMCAI), pages 427–442. Springer-Verlag, 2006.

[BN04] S. Berghofer and T. Nipkow. Random Testing in Isabelle/HOL.

In Proceedings of the 2nd International Conference on Soft-

ware Engineering and Formal Methods (SEFM), pages 230–

239. IEEE, 2004.

[BNO+08a] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-

Carbonell, and A. Rubio. A Write-Based Solver for SAT Mod-

ulo the Theory of Arrays. In Proceedings of the 8th Interna-

tional Conference on Formal Methods in Computer-Aided De-

sign (FMCAD). IEEE, 2008.

[BNO+08b] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez-

Carbonell, and A. Rubio. The Barcelogic SMT Solver. In

114 BIBLIOGRAPHY

Proceedings of the 20th International Conference on Computer

Aided Verification (CAV), pages 294–298, 2008.

[BNOT06] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Split-

ting on Demand in SAT Modulo Theories. In Proceedings of

the 15th International Conference on Logic for Programming,

Artificial Intelligence, and Reasoning (LPAR), pages 512–526.

Springer-Verlag, 2006.

[BRST08] C. Barrett, S. Ranise, A. Stump, and C. Tinelli. The Satisfiabil-

ity Modulo Theories Library (SMT-LIB). www.SMT-LIB.org,

2008.

[Bru08] Roberto Bruttomesso. RTL Verification: From SAT to

SMT(BV). PhD thesis, University of Trento, 2008.

[BS08] R. Bruttomesso and N. Sharygina. OpenSMT 0.1 System De-

scription, 2008.

[BT07] C. Barrett and C. Tinelli. CVC3. In Proceedings of the 19th In-

ternational Conference on Computer Aided Verification (CAV),

pages 298–302. Springer-Verlag, 2007.

[BTV09] N. Bjørner, N. Tillmann, and A. Voronkov. Path Feasibil-

ity Analysis for String-Manipulating Programs. In Proceedings

of the 15th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS), pages

307–321. Springer-Verlag, 2009.

[CDE08] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex

Systems Programs. In Proceedings of the 8th USENIX Sympo-

sium on Operating System Design and Implementation (OSDI),

pages 209–224. USENIX Association, 2008.

[CGJ+03] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.

Counterexample-Guided Abstraction Refinement for Symbolic

BIBLIOGRAPHY 115

Model Checking. Journal of the ACM (JACM), pages 752–794,

2003.

[CGP+06] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.

Engler. EXE: Automatically Generating Inputs of Death. In

Proceedings of the 13th ACM Conference on Computer and

Communications Security, pages 322–335. ACM, 2006.

[CGS08] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Interpolant

Generation in Satisfiability Modulo Theories. In Proceedings

of the 14th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS), pages

397–412. Springer-Verlag, 2008.

[CGS09] A. Cimatti, A. Griggio, and R. Sebastiani. Interpolant Gen-

eration for UTVPI. In Proceedings of the 22nd International

Conference on Automated Deduction (CADE), pages 167 – 182.

Springer-Verlag, 2009.

[CH00] K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool

for Random Testing of Haskell Programs. In Proceedings of the

5th ACM SIGPLAN International Conference on Functional

Programming (ICFP), pages 268–279. ACM, 2000.

[CKL04] E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking

ANSI-C Programs . In Proceedings of the 10th International

Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS), pages 168–176. Springer-Verlag,

2004.

[Cla08] E. Clarke. The Birth of Model Checking. In 25 Years of Model

Checking, pages 1–26. Springer-Verlag, 2008.

[Coo71] S. Cook. The Complexity of Theorem-Proving Procedures. In

Proceedings of the 3rd ACM Symposium on Theory of Comput-

ing, pages 151–158. ACM, 1971.

116 BIBLIOGRAPHY

[CS03] K. Claessen and N. Sörensson. New Techniques that Improve

MACE-style Finite Model Finding. In CADE-19, Workshop

W4, Model Computation – Principles, Algorithms, Applica-

tions, 2003.

[DdM06] B. Dutertre and L. de Moura. The Yices SMT Solver, 2006.

http://yices.csl.sri.com/tool-paper.pdf.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A Machine Program

for Theorem-Proving. Communications of the ACM, 5, 1962.

[dMB08] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver.

In Proceedings of the 14th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems

(TACAS), pages 337–340. Springer-Verlag, 2008.

[dMR02] L. de Moura and H. Rueß. Lemmas on Demand for Satisfiability

Solvers. In Proceedings of the 5th International Conference on

Theory and Applications of Satisfiability Testing (SAT), pages

244–251. Springer-Verlag, 2002.

[DNS05] D. Detlefs, G. Nelson, and J. Saxe. Simplify: A Theorem Prover

for Program Checking. Journal of the ACM (JACM), 52:365–

473, 2005.

[Eén05] N. Eén. SAT Based Model Checking. PhD thesis, Chalmers

University of Technology and Göteborg University, 2005.

[ES03] N. Eén and N. Sörensson. Temporal Induction by Incremental

SAT Solving. Electronic Notes in Theoretical Computer Science

(ENTCS), 89(4), 2003.

[ES04] N. Eén and N. Sörensson. An Extensible SAT-Solver. In Pro-

ceedings of the 7th International Conference on Theory and

Applications of Satisfiability Testing (SAT), pages 333–336.

Springer-Verlag, 2004.

BIBLIOGRAPHY 117

[FGG+09] A. Fuchs, A. Goel, J. Grundy, S. Krstic, and C. Tinelli. Ground

Interpolation for the Theory of Equality. In Proceedings of the

15th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS), pages 413–

427. Springer-Verlag, 2009.

[FJS03] C. Flanagan, R. Joshi, and J. Saxe. Theorem Proving Using

Lazy Proof Explication. In Proceedings of the 15th International

Conference on Computer Aided Verification (CAV), pages 355–

367. Springer-Verlag, 2003.

[Gan07] V. Ganesh. Decision Procedures for Bit-Vectors, Arrays and

Integers. PhD thesis, Computer Science Department, Stanford

University, 2007.

[GBT07] Y. Ge, C. Barrett, and C. Tinelli. Solving Quantified Ver-

ification Conditions using Satisfiability Modul Theories. In

Proceedings of the 21st International Conference on Automated

Deduction (CADE), pages 167–182. Sringer-Verlag, 2007.

[GD07] V. Ganesh and D. Dill. A Decision Procedure for Bit-Vectors

and Arrays. In Proceedings of the 19th International Confer-

ence on Computer Aided Verification (CAV), pages 519–531.

Springer-Verlag, 2007.

[GdM09] Y. Ge and L. de Moura. Complete instantiation for quantified

smt formulas. In Proceedings of the 21st International Confer-

ence on Computer Aided Verification (CAV). Springer-Verlag,

2009.

[GK05] A. Groce and D. Kroening. Making the Most of BMC Coun-

terexamples . In Proceedings of the 2nd International Work-

shop on Bounded Model Checking (BMC), pages 67–81. Else-

vier, 2005.

[GKF08] A. Goel, S. Krstic, and A. Fuchs. Deciding Array Formulas

with Frugal Axiom Instantiation. In Proceedings of the joint

118 BIBLIOGRAPHY

Workshops of the 6th International Workshop on Satisfiability

Modulo Theories and the 1st International Workshop on Bit-

Precise Reasoning, pages 12–17. ACM, 2008.

[GKL04] A. Groce, D. Kroening, and F. Lerda. Understanding Coun-

terexamples with explain . In Proceedings of the 16th Inter-

national Conference on Computer Aided Verification (CAV),

pages 453–456. Springer-Verlag, 2004.

[GKL08] P. Godefroid, A. Kiezun, and M. Levin. Grammar-Based

Whitebox Fuzzing. In Proceedings of the ACM SIGPLAN 2008

Conference on Programming Language Design and Implemen-

tation (PLDI), pages 206–215. ACM, 2008.

[GKT09] A. Goel, S. Krstic, and C. Tinelli. Ground Interpolation for

Combined Theories. In Proceedings of the 22nd International

Conference on Automated Deduction (CADE), pages 183 – 198.

Springer-Verlag, 2009.

[GLM08] P. Godefroid, M. Levin, and D. Molnar. Automated Whitebox

Fuzz Testing. In Proceedings of the 16th Symposium on Network

and Distributed System Security (NDSS). The Internet Society,

2008.

[GNRZ07] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision

Procedures for Extensions of the Theory of Arrays. Annals of

Mathematics and Artificial Intelligence, 50:231–254, 2007.

[GSK98] C. Gomes, B. Selman, and H. Kautz. Boosting Combinatorial

Search Through Randomization. In Proceedings of the 15th In-

ternational Conference on Artificial Intelligence (AAAI), pages

431–437. AAAI Press, 1998.

[HBG04] Y. Hu, C. Barrett, and B. Goldberg. Theory and Algorithms for

the Generation and Validation of Speculative Loop Optimiza-

tions. In Proceedings of the 2nd IEEE International Conference

BIBLIOGRAPHY 119

on Software Engineering and Formal Methods (SEFM), pages

281–289. IEEE, 2004.

[HH07] N. He and M. Hsiao. Bounded Model Checking of Embedded

Software in Wireless Cognitive Radio Systems. In Proceed-

ings of the 25th International Conference on Computer Design

(ICCD), pages 19–24. IEEE, 2007.

[HH08] N. He and M. Hsiao. A new Testability Guided Abstraction to

Solving Bit-Vector Formula. In Proceedings of the joint Work-

shops of the 6th International Workshop on Satisfiability Mod-

ulo Theories and the 1st International Workshop on Bit-Precise

Reasoning, pages 39–45. ACM, 2008.

[HHK08] T. Henzinger, T. Hottelier, and Laura Kovacs. Valigator: A

Verification Tool with Bound and Invariant Generation. In

Proceedings of the 15th International Conference on Logic for

Programming, Artificial Intelligence, and Reasoning (LPAR),

pages 333–342. Springer-Verlag, 2008.

[HJS09] Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: a Parallel

SAT Solver. Journal on Satisfiability, Boolean Modeling and

Computation (JSAT), 6:245–262, 2009.

[ISO99] ISO/IEC. Programming Languages - C (ISO/IEC

9899:1999(E)), 1999.

[JES07] P. Jackson, B. Ellis, and K. Sharp. Using SMT Solvers to Verify

High-Integrity Programs. In Proceedings of the 2nd workshop on

Automated Formal Methods (AFM), pages 60–68. ACM, 2007.

[JLS09] S. Jha, R. Limaye, and S. Seshia. Beaver: Engineering an Effi-

cient SMT Solver for Bit-Vector Arithmetic. In Proceedings of

the 21st International Conference on Computer Aided Verifica-

tion (CAV). Springer-Verlag, 2009.

120 BIBLIOGRAPHY

[KGP01] A. Kühlmann, M. Ganai, and V. Paruthi. Circuit-based

Boolean Reasoning. In Proceedings of the 38th Conference on

Design Automation (DAC), pages 232–237. ACM, 2001.

[KJS08] H. Kim, H. Jin, and F. Somenzi. Sateen: Sat

Enumeration Engine for SMT-COMP’08, 2008.

www.smtexec.org/exec/competitors2008.php?desc=390.

[KMZ06] D. Kapur, R. Majumdar, and C. Zarba. Interpolation for Data

Structures. In Proceedings of the 14th ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering

(FSE)), pages 105–116. ACM, 2006.

[KS07] D. Kroening and S. Seshia. Formal Verification at Higher

Levels of Abstraction . In Proceedings of the IEEE/ACM In-

ternational Conference on Computer-Aided Design (ICCAD),

pages 572–578. IEEE, 2007. Tutorial.

[KS08] D. Kroening and O. Strichman. Decision Procedures: An Al-

gorithmic Point of View. Springer-Verlag, 2008.

[KV09] L. Kovacs and A. Voronkov. Interpolation and Symbol Elim-

ination. In Proceedings of the 22nd International Conference

on Automated Deduction (CADE), pages 199 – 213. Springer-

Verlag, 2009.

[KW07] D. Kroening and G. Weissenbacher. Lifting Propositional In-

terpolants to the Word-Level . In Proceedings of the 7th In-

ternational Conference on Formal Methods in Computer-Aided

Design (FMCAD), pages 85–89. IEEE, 2007.

[LQ08] S. Lahiri and S. Qadeer. Back to the Future: Revisiting Precise

Program Verification Using SMT Solvers. In Proceedings of

the 35th ACM SIGPLAN-SIGACT symposium on Principles of

Programming Languages (POPL), pages 171–182. ACM, 2008.

BIBLIOGRAPHY 121

[LS04] S. Lahiri and S. Seshia. The UCLID Decision Procedure. In

Proceedings of the 16th International Conference on Computer

Aided Verification (CAV), pages 475–478. Springer-Verlag,

2004.

[McC62] J. McCarthy. Towards a Mathematical Science of Computa-

tion. In Proceedings of the IFIP Congress, pages 21–28. North-

Holland, 1962.

[McC94] W. McCune. A Davis-Putnam Program and its Application to

Finite First-Order Model Search: Quasigroup Existence Prob-

lems. Technical report, Argonne National Laboratory, 1994.

[McM92] K. McMillan. Symbolic Model Checking. An Approach to the

State Explosion Problem. PhD thesis, Carnegie Mellon Univer-

sity, 1992.

[McM03] K. McMillan. Interpolation and SAT-Based Model Checking.

In Proceedings of the 15th International Conference on Com-

puter Aided Verification (CAV). Springer-Verlag, 2003.

[McM04] K. McMillan. An Interpolating Theorem Prover. In Proceedings

of the 10th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS), pages

101–121. Springer-Verlag, 2004.

[MKL+95] B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy,

A.Natarajan, and J. Steidl. Fuzz Revisited: A Re-examination

of the Reliability of UNIX Utilities and Services. Technical

Report CS-TR-1995-1268, University of Wisconsin, Madison,

1995.

[MM00] P. Manolios and J. Moore. Computer-Aided Reasoning: An

Approach. Kaufmann, 2000.

122 BIBLIOGRAPHY

[MS06] G. Misherghi and Z. Su. HDD: Hierarchical Delta Debugging.

In Proceedings of the 28th International Conference on Software

Engineering (ICSE), pages 142–151. ACM, 2006.

[MSV06] P. Manolios, S. Srinivasan, and D. Vroon. Automatic Mem-

ory Reductions for RTL Model Verification. In Proceedings of

the IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pages 786–793. ACM, 2006.

[NO79] G. Nelson and D. Oppen. Simplification by Cooperating De-

cision Procedures. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), 1:245–257, 1979.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT

and SAT Modulo Theories: From an Abstract Davis-Putnam-

Logemann-Loveland Procedure to DPLL(T). Journal of the

ACM (JACM), 53:937–977, 2006.

[NPW02] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL - A Proof

Assistant for Higher-Order Logic. Springer-Verlag, 2002.

[OSR92] S. Owre, N. Shankar, and J. Rushby. PVS: A Prototype Verifi-

cation System. In Proceedings of the 11th International Confer-

ence on Automated Deduction (CADE). Springer-Verlag, 1992.

[Owr06] S. Owre. Random Testing in PVS. In Proceedings of the 1st

Workshop on Automated Formal Methods (AFM), 2006.

[PD07] K. Pipatsrisawat and A. Darwiche. RSat 2.0: SAT Solver

Description. Technical Report D–153, Automated Reasoning

Group, Computer Science Department, UCLA, 2007.

[RT06] S. Ranise and C. Tinelli. The SMT-LIB Standard: Version

1.2. Technical report, Department of Computer Science, The

University of Iowa, 2006. Available at www.SMT-LIB.org.

BIBLIOGRAPHY 123

[SBDL01] A. Stump, C. Barrett, D. Dill, and J. Levitt. A Decision Proce-

dure for an Extensional Theory of Arrays. In Proceedings of the

16th Symposium on Logic in Computer Science (LICS), pages

29–37. IEEE, 2001.

[Seb07] R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal

on Satisfiability, Boolean Modeling and Computation (JSAT),

3:141–224, 2007.

[SGA07] M. Sutton, A. Greene, and P. Amini. Fuzzing - Brute Force

Vulnerability Discovery. Pearson Education, 2007.

[SGBB00] M. Schulte, M. Gok, P. Balzola, and R. Brocato. Combined

Unsigned and Two’s Complement Saturating Multipliers, 2000.

[SGF09] S. Srivastava, S. Gulwani, and J. Foster. V S3: SMT Solvers for

Program Verification. In Proceedings of the 21st International

Conference on Computer Aided Verification (CAV). Springer-

Verlag, 2009.

[Sho84] R. Shostak. Deciding Combinations of Theories. Journal of the

ACM (JACM), 31:1–12, 1984.

[Sin06] Eli Singerman. Challenges in Making Decision Procedures Ap-

plicable to Industry. In Proceedings of the 3rd International

Workshop on Pragmatics of Decision Procedures in Automated

Reasoning (PDPAR). Elsevier, 2006.

[SJPS08] J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An Au-

tomatic Verifier for Java-Like Programs Based on Dynamic

Frames. In Proceedings of the 11th Conference on Fundamental

Approaches to Software Engineering (FASE), pages 261–275.

Springer-Verlag, 2008.

[SSS00] M. Sheeran, S. Singh, and G. St̊almarck. Checking Safety Prop-

erties Using Induction and a SAT-Solver. In Proceedings of the

124 BIBLIOGRAPHY

3rd International Conference on Formal Methods in Computer-

Aided Design (FMCAD), pages 108–125. Springer-Verlag, 2000.

[TdH08] N. Tillmann and J. de Halleux. PEX - White Box Test Gen-

eration for .NET. In Proceedings of the 2nd International Con-

ference on Tests and Proofs (TAP), pages 134–153. Springer-

Verlag, 2008.

[TDM08] A. Takanen, J. Demott, and C. Miller. Fuzzing for Software

Security Testing and Quality Assurance. Artech House, 2008.

[Tse83] G. Tseitin. On the Complexity of Proofs in Propositional Log-

ics. Automation of Reasoning: Classical Papers in Computa-

tional Logic 1967-1970, 2, 1983. Originally published 1970.

[Vid08] A. Vida. Random Test Case Generation and Delta Debugging

for BitVector Logic with Arrays. Master’s thesis, Johannes

Kepler University, Linz, Austria, 2008.

[VTP09] D. Vanoverberghe, N. Tillmann, and F. Piessens. Test Input

Generation for Programs with Pointers. In Proceedings of the

15th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS), pages 277–

291. Springer-Verlag, 2009.

[WFG+07] R. Wille, G. Fey, D. Groe, S. Eggersgl, and R. Drechsler.

SWORD: A SAT like Prover Using Word Level Information. In

Proceedings of the 15th IFIP International Conference on Very

Large Scale Integration (VLSI), pages 88–93. IEEE, 2007.

[WHdM09] C. Wintersteiger, Y. Hamadi, and L. de Moura. A Concur-

rent Portfolio Approach to SMT Solving. In Proceedings of the

21st International Conference on Computer Aided Verification

(CAV). Springer-Verlag, 2009.

[Wir95] N. Wirth. Digital Circuit Design: An Introductory Textbook.

Springer-Verlag, 1995.

BIBLIOGRAPHY 125

[YM05] G. Yorsh and M. Musuvathi. A Combination Method for Gen-

erating Interpolants. In Proceedings of the 20th International

Conference on Automated Deduction (CADE), pages 353–368.

Springer-Verlag, 2005.

[Zel05] A. Zeller. Why Programs Fail. A Guide to Systematic Debug-

ging. Kaufmann, 2005.

[ZH02] A. Zeller and R. Hildebrandt. Simplifying and Isolating Failure-

Inducing Input. IEEE Transactions on Software Engineering,

28:183–200, 2002.

[ZPG+05] L. Zuck, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and

Y. Hu. Translation and Run-Time Validation of Loop Trans-

formations. Formal Methods in System Design (FMSD),

27(3):335–360, 2005.

[ZZ96] H. Zhang and J. Zhang. Generating Models by SEM. In Pro-

ceedings of the 13th International Conference on Automated De-

duction (CADE), pages 308 – 312. Springer-Verlag, 1996.

126 BIBLIOGRAPHY

Appendix A

The BTOR Format

A.1 Overview

BTOR is a quantifier-free word-level format for formulas over bit-vectors

in combination with one-dimensional arrays. It is strongly typed, easy to

parse, multi-rooted, and has precise semantics. Unlike the Spear Format

(SF) [Bab07], which only supports bit-vectors up to 64 bits, bit-vectors can

have an arbitrary bit-width in BTOR.

BTOR supports bit-vector variables, constants, and one-dimensional bit-

vector arrays. Most bit-vector operations can be used in a signed or un-

signed context. In the signed context, bit-vectors are interpreted as being

represented in two’s complement.

Similar to SF, the result of every operation is assigned to an intermediate

variable, as the following example shows:

1 var 32 3 constd 32 127 5 eq 1 3 4

2 var 32 4 and 32 1 -2 6 root 1 5

In line 1 and 2 we declare two 32-bit variables. In BTOR, a non-negative

integer in the first column is used as unique identifier. Typically, we use the

line number as identifier. In line 3 we declare the decimal 32-bit constant

127. Line 4 shows how computation is expressed in BTOR. We use the bit-

wise operator and and apply it to the operands with the identifiers 1 and 2,

which are the variables we have declared before. The result of this operation

127

128 APPENDIX A. THE BTOR FORMAT

has the identifier 4. The minus before 2 expresses logical negation1, i.e. we

flip all bits of the variable 2 before we combine it with the variable 1. The

result has 32 bits, which is indicated by the bit-width after the operator. In

line 5 we compare the decimal constant with the sub-formula 4 for equality.

The length of this result is 1, as relational operators are boolean. Finally, we

declare the sub-formula 5 as boolean root.

This simple example already shows some interesting design decisions. The

format should be easy to parse. The first column is used for the identifier,

the second for the operator, and the third for the bit-width. This restriction

makes it easy to write a parser for BTOR. The additional type information

in the third column makes it easy for the parser to check type consistency

on the fly.

Being able to add back annotation in form of an explicit symbol table

simplifies many applications. In BTOR there is no separate symbol table

as in the And-Inverter Graph Format AIGER [Bie09]. However, variable

declarations can have an additional symbol part, separated by white space

after the bit width. Comments start with ‘;’ and stretch until the end of the

current line.

BTOR does not allow forward references, i.e. all operands have to be de-

clared before they are used. This restriction makes parsing BTOR instances

trivial, as it can be done in one pass. For example, our visualizer of the

BTOR format consists of an AWK script of less than 80 lines, and produces

a graph description in DOT format. A utility that prints a histogram of the

number of operator occurrences can be implemented as the following one line

AWK script:

{a[$2]++}END{for(k in a)printf "%-7s%d\n", k, a[k]|"sort -n -k 2";}

As in Verilog, boolean variables are treated just as bit-vectors with bit-

width one. This simplifies the format as we do not have to convert from

boolean to bit-vector and vice versa. We can simply treat the boolean case

as bit-vector case with bit-width one.

BTOR is multi-rooted, which allows to model multiple outputs. Multiple

1Note that BTOR also supports the unary but redundant operator not.

A.2. BIT-VECTORS 129

roots can be used to model hardware systems, which typically have boolean

and bit-vector outputs.

A.2 Bit-vectors

BTOR supports the following bit-vector constructors: var for bit-vector vari-

ables, constd, consth and const for decimal, hexadecimal and binary con-

stants, and one, ones and zero for the constants 1, -1 and 0. All constructors

take the bit-width as first argument. The constructor var takes an optional

symbol string as second argument. The constructors constd, consth and const

take the constant value as second argument.

The set of bit-vector operators is shown in table A.1, A.2, A.3 and A.4.

The columns w1 to w3 represent the bit-width of the operands. The column

wr represents the bit-width of the result. The semantics of most operators

are defined by the semantics of the corresponding operators in the quantifier-

free theory of fix-sized bit-vectors QF BV in the SMT-LIB standard [RT06].

The only exceptions are as follows.

The SMT-LIB standard does not specify the result of dividing by zero.

In BTOR the result of dividing by zero is the largest unsigned integer that

can be represented with the bit-width of the operands. This corresponds to

real divider circuits in hardware systems. Nevertheless, the underspecified

variant of the SMT-LIB format can always be modelled by treating divison

by zero as uninterpreted function.

The bit-width of shift operands are restricted in the following way. The

bit-width of the first operand has to be a power of two. The bit-width of the

second argument has to be log2 of the bit-width of the first operand. If the

bit-width of the shift operands is log2, then it is impossible to shift more than

the bit-width, which for example is undefined in the programming language

C [ISO99, BB07].

Additionally, BTOR supports the Verilog reduction operators redand, re-

dor and redxor, the VHDL rotate operators rol and ror, and a new set of

overflow detection operators. For example the overflow detection operator

umulo returns 1 if unsigned multiplication overflows. Consider the following

130 APPENDIX A. THE BTOR FORMAT

class operators w1 wr

negation not, neg n n

reduction redand, redor, redxor n 1
arithmetic inc, dec n n

Table A.1: The unary bit-vector operators not and neg apply one’s resp. two’s
complement. The operators redand, redor and redxor are reduction operators
from Verilog. The operators inc and dec are used to increment resp. decre-
ment a bit-vector by one.

example:

1 var 32 4 redand 1 2 7 and 1 6 -5

2 var 32 5 umulo 1 1 2 8 root 1 7

3 redand 1 1 6 and 1 3 4

The reduction operator redand returns 1, if all bits of the operand are

set to one. In this case unsigned multiplication overflows. We assert the

opposite in line 7, which makes this instance unsatisfiable.

Whether we want to detect arithmetic overflows or not, depends on the

application scenario. Typically, in software verification we are interested in

detecting overflows, as the results are often undefined and depend on com-

pliler semantics [BB07]. However, in hardware verification overflow detection

is in most cases unnecessary. In our C expression checker C32SAT [BB07]

overflow detection is always automatically applied, which makes verification

instances unnecessarily hard if we do not care about overflows. Thus, we

separated overflow detection from arithmetic, and introduced an additional

set of overflow detection operators in BTOR. We get only harder verification

instances if we are interested in overflow detection.

Finally, it is of course possible to express some of our operators in terms

of others. For instance our SMT solver Boolector [BB09a] supports the full

set of operators, both in the application interface (API) and of course also

in the parser for the BTOR format. Internally, however, we only use a sub-

set of base operators, which are shown underlined and bold. Our selection

can be considered to be arbitrary. It is motivated by the kind of word-level

A.2. BIT-VECTORS 131

class operators w1 w2 wr

bitwise and, or, xor, nand, nor, xnor n n n

boolean implies, iff 1 1 1

arithmetic
add, sub, mul, urem, srem

n n n
udiv, sdiv, smod

relational
eq, ne, ult,

n n 1
slt, [us]lte, [us]gt, [us]gte

shift sll, srl, sra, ror, rol n log2n n

overflow [us]addo, [us]subo, [us]mulo, sdivo n n 1
concatenation concat n1 n2 n1 + n2

Table A.2: Binary bit-vector operators. Some operators can be used in a
signed or unsigned context, e.g. sdiv represents signed bit-vector division
with two’s complement semantics. For every arithmetic operator there is a
corresponding overflow detection operator. The only exception is udiv as
unsigned division can never overflow. Signed division overflows [BB07] if we
divide the smallest negative integer by -1.

class operators w1 w2 w3 wr

conditional cond 1 n n n

Table A.3: The only ternary bit-vector operator cond represents a functional
if-then-else. If the condition is 1, it returns the second argument, and the
third argument otherwise.

class operators w1 upper lower wr

extract slice n u l u - l + 1

Table A.4: Miscellaneous bit-vector operators. The first operand identifies
the variable to which slice is applied, upper and lower are immediates. The
slice operator is the only operator that uses immediates.

132 APPENDIX A. THE BTOR FORMAT

simplifications we implemented in Boolector, which could be different for

other solvers.

We can imagine various word-level techniques that can benefit from non-

base operators. However, in contrast to the bit-level AIGER format it is

much harder on the word-level to extract non-base operators after they have

been represented with base operators. Therefore, we argue that in a general

format for bit-precise word-level modelling it should be possible to express

and retain non-base operators. On the other hand it is always possible to

rewrite benchmarks that contain non-base operators into the base format.

A.3 Arrays

Arrays can be constructed with array. The first argument is the bit-width of

the elements, and the second the size of the memory as power of two, i.e. the

number of address bits. BTOR supports bit-vector arrays in combination

with the array operations read, write, acond and eq, as the following example

shows:

1 array 32 4 6 var 1 11 eq 1 3 8

2 array 32 4 7 acond 32 4 6 1 2 12 and 1 10 11

3 array 32 4 8 write 32 4 7 4 5 13 root 1 12

4 var 4 9 read 32 8 4

5 var 32 10 eq 1 5 9

In the first three lines we declare three arrays with element bit-width 32,

and size 24 = 16. In line 7 we use an if-then-else on the arrays 1 and 2. If

the condition 6 is true, we return 1, and 2 otherwise. The result is an array

with bit-width 32 and size 16. Line 8 writes on 7 the element 5 at index 4.

The result is an array, where the element at position 4 is overwritten with

5. The elements on all other positions remain the same. In line 9 we read

32 bits on 8 at index 4, i.e. we read the value that has been written at this

index before. In line 10 we compare the read value with 5. In line 11 we

compare the arrays 3 and 8. Finally, we assert 10 and 11, and declare the

result as root.

A.4. SEQUENTIAL EXTENSION 133

A.4 Sequential Extension

BTOR supports modelling sequential and synchronous circuits with registers

and memories. Registers are modelled with the help of var and next, and

memories with array and anext. Variables without next, and arrays without

anext, are treated as primary inputs, which are fresh for every clock cycle.

Registers are initialized to zero. Memories are uninitialized as this is

nearly always the case for main memory in software and memory blocks in

hardware. Consider the following example.

1 var 32 3 constd 32 5 5 next 32 1 4

2 var 32 4 xor 32 1 2

In line 5 we apply next to 1, which determines that 1 is a register. Variable

2 is an input as there is no next function for it. The next function for 1 is 4,

i.e. in every cycle we apply xor to the current content of the register 1, and

the primary input 2.

Additionally, BTOR supports modelling safety properties, which can be

used for model checking. A safety property is represented by a boolean root.

Multiple boolean roots are implicitly disjuncted as they typically represent

different bad states.

A.5 Case Study

We present a case study where we show how BTOR, in particular its sequen-

tial extension, can be used to model hardware and systems. We use BTOR

to model a FIFO with internal memory.

A.5.1 FIFOs

We took two different Verilog implementations of a typical hardware FIFO

as shown in Fig. A.1, and modelled both with BTOR. In this case we man-

ually translated the Verilog models to BTOR, but in principle this could be

automated. The first implementation organizes its internal memory as stack,

while the second implementation uses a queue. Both implementations use

134 APPENDIX A. THE BTOR FORMAT

FIFO

empty

data_out

full

reset

enqueue

dequeue

data_in

Figure A.1: Hardware FIFO as black box. The clock signal is omitted.

head resp. tail registers that hold the address of the first and last element.

The following Verilog code fragment shows how the queue-based implemen-

tation behaves if dequeue is active:

if (empty == 1’b0) begin

data_out <= # 1 mem[head];

head <= # 1 head + 3’b001;

end

if (head + 3’b001 == tail) begin empty <= # 1 1’b1; end

full <= # 1 1’b0;

Consider the following BTOR fragment for a queue-based FIFO imple-

mentation. It shows how the next-operator can be used to model internal

memory.

1 var 1 reset 7 var 1 full 53 write 32 3 6 11 4

2 var 1 enqeue 8 var 1 empty 54 acond 32 3 7 6 53

3 var 1 deqeue 9 var 32 data_out 55 acond 32 3 2 54 6

4 var 32 data_in 10 var 3 head 56 acond 32 3 5 55 6

5 xor 1 2 3 11 var 3 tail 57 acond 32 3 1 56 6

6 array 32 3 ... 58 anext 32 3 6 57

In line 58 the next-operator is applied to the array, which models internal

FIFO memory. If reset is active (low), or enqueue and dequeue are equal,

or enqueue is not active, or enqueue is active and the FIFO is full, memory

remains in the same state. The if-then-else chain models the priority of the

signals. However, if enqueue is active and the FIFO is not full, we write at

the position the register tail points to the current input data in. Analogously,

we modelled the bit-vector registers head, tail, empty, full and data out.

A.6. EXPERIMENTS 135

A.6 Experiments

We extended our SMT solver Boolector [BB09a] for checking sequential

BTOR instances. In other words, we implemented a bounded model checker

within Boolector. Boolector uses a functional AIG encoding including two

level AIG rewriting [BB06]. Picosat [Bie08] is used as SAT solver. Boolector

supports bounded model checking for witnesses [BCCZ99], and k-induction

[SSS00] with and without All Different Constraints (ADCs). ADCs are used

to represent simple path constraints. Note that model checking instances

with memories generates ADCs with inequalities on arrays, which need ex-

tensionality [BB09a].

We compared Boolector’s incremental model checking to non-incremental

Boolector and Z3 1.2 [dMB08]. The benchmarks are parametrized instances

for checking behavioral equivalence of two FIFO implementations as pre-

sented in A.5.1. Bit-width and size of memory is 32. The results are shown

in table A.5. Column 1 shows the upper bound of the model checking in-

stance. Column 2 shows the time of incremental model checking, which

includes searching for witnesses and k-induction with ADCs. In column 3

ADCs are disabled.

The non-incremental results have been computed in the following way.

First, we generated SMT instances that represent (i) search for witnesses,

(ii) k-induction with ADCs, and (iii) k-induction without ADCs. In columns

4 and 6 we summed up the solving times for the results of (i) and (ii), from 0

to k. Analogously, we computed column 5 and 7 by summing up the results

of (i) and (iii). Boolector clearly outperforms Z3. In the case where ADCs

are disabled, the incremental model checking of Boolector is faster than the

non-incremental.

136 APPENDIX A. THE BTOR FORMAT

boolector z3
inc non-inc non-inc

k adc noadc adc noadc adc noadc
00 0.0 0.0 0.0 0.0 0.0 0.0
01 0.1 0.0 0.1 0.0 0.0 0.0
02 0.8 0.1 0.9 0.1 300.3 0.0
03 15.4 0.3 6.1 0.4 639.9 313.1
04 41.9 0.7 38.0 1.1 to to

05 91.2 1.6 96.5 2.7 to to

06 419.8 3.7 267.8 5.8 to to

07 to 6.8 to 11.7 to to

08 to 14.3 to 23.9 to to

09 to 31.1 to 47.8 to to

10 to 73.7 to 97.2 to to

Table A.5: Experiments for equivalence checking of the FIFOs in A.5.1. We
compare our SMT solver Boolector with Z3 1.2. We ran our benchmarks on
our cluster of 3 GHz Pentium IV with 2 GB main memory, running Ubuntu
Linux. Time limit is 900 seconds and memory limit is 1500 MB. Time out is
indicated by to.

Appendix B

Detected Errors

In the following we show a selection of the most interesting errors that we

encountered during our fuzzing experiments in section 4.4. The errors demon-

strate that fuzzing was able to detect bugs deep in the core of SMT solvers.

Error messages of the most common critical bugs that have been found,

i.e. segmentation faults, aborts and floating point exceptions, are not shown.

Note that the random formulas that were used to test STP did not con-

tain any division operators. Recall that all random formulas were syntacti-

cally valid and contained only supported operators and formula structures.

However, some error messages misleadingly claimed that there were syntax

errors. Finally, the error message shown for Z3 is from the emulator Wine1.

Z3 caused a page fault.

Beaver 1.1 RC1

Fatal error:

exception Assert_failure("node_eval.ml", 876, 6)

Fatal error:

exception Assert_failure("div_simplification.ml", 345, 4)

Fatal error:

exception Assert_failure("circuit_generator.ml", 310, 6)

1www.winehp.org

137

138 APPENDIX B. DETECTED ERRORS

Fatal error:

Aiger.create: cannot read file

"beaver-1.1-rc1-i686/share/beaver/strash_only/bvudiv_10.aig"

Fatal error:

exception Assert_failure("solver.ml", 84, 30)

CVC3 1.5

**** Fatal error in theory_core.cpp:325 (false)

Equivalence classes didn’t get merged

**** Fatal error in search_sat.cpp:631 (false)

Should be unreachable

*** Unknown fatal exception caught

*** Fatal exception:

Soundness error: in bitvector_theorem_producer.cpp:2840

(e.getOpKind() == (isAnd ? BVAND : BVOR))

BitvectorTheoremProducer::andConst:

e = IF (0bin1 = (~(IF BVLT((IF (0bin1 =

IF BVLT(0bin1010011110010001,v1)

THEN 0bin1 ELSE 0bin0 ENDIF)

THEN 0bin1 ELSE 0bin0 ENDIF & (~(0bin0))),0bin0)

THEN 0bin1 ELSE 0bin0 ENDIF)))

THEN 0bin1 ELSE 0bin0 ENDIF

*** Fatal exception:

Illegal call to getExprValue()

*** Fatal exception:

Type Checking error:

Wrong bounds in bit-vector extract:

139

*** Fatal exception:

Type Checking error:

Mismatched bit-vector size in bit-wise AND (child #1).

*** Fatal exception:

Type Checking error:

Not a bit-vector expression (child #2) in bit-wise AND:

MathSAT 4.2.3

Floating point exception

[: 10: BV...: unexpected operator

OpenSMT

terminate called after throwing an instance

of ’std::invalid_argument’

what(): mpq_set_str

Sateen SMT-COMP’08

UNSAT

unknown

UNSAT

sat

STP 0.1

Fatal Error:

TopLevelSAT: reached the end without proper conclusion:

either a divide by zero in the input or a bug in STP

140 APPENDIX B. DETECTED ERRORS

Z3 1.2

wine: Unhandled page fault on read access to 0x00000004 at

address 0x4132c5 (thread 0009), starting debugger...

Unhandled exception: page fault on read access to 0x00000004

in 32-bit code (0x004132c5).

Appendix C

Curriculum Vitae

Short Biography

• 1980: born in Wels, Austria

• 1987 - 1991: Elementary School, Wels, Austria

• 1991 - 1996: High School, Wels, Austria

• 1996 - 2000: High School with emphasis on music, Grieskirchen, Austria

• 2000 - 2004: Bachelor student (Computer Science) at the Johannes

Kepler University, Linz, Austria

• 2004 - 2006: Master student (Computer Science) at the Johannes Ke-

pler University, Linz, Austria

• 2006 - now: Ph.D. student (Technical Sciences), and research and

teaching assistant at the institute of Formal Models and Verification

(FMV), Johannes Kepler University Linz, Austria

141

142 APPENDIX C. CURRICULUM VITAE

Awards

• Best Student Paper Award for ”BTOR: Bit-Precise Modelling of Word-

Level Problems for Model Checking” [BBL08], presented at BPR’08.

• Best SMT solver in QF BV at SMT-COMP’08 [BDOS08].

• Best SMT solver in QF AUFBV at SMT-COMP’08 [BDOS08].

• Second best SMT solver in QF BV at SMT-COMP’09 [BDOS09].

• Best SMT solver in QF AUFBV at SMT-COMP’09 [BDOS09].

Research Interests

• Satisfiability Modulo Theories (SMT)

• Formal Verification

• Fuzz Testing

• Delta-Debugging

• And-Inverter Graphs

• Propositional Satisfiability (SAT)

Teaching Activities

• Systems Programming

• Introduction into Programming

• Pthreads Programming

• Formal Modeling

• Model Checking

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig

und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfs-

mittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen

als solche kenntlich gemacht habe.

Linz, September, 2009

Dipl.-Ing. Robert Daniel Brummayer Bakk. techn.

